Πριν από δυο εβδομάδες η NASA καθοδήγησε ένα διαστημόπλοιο έτσι ώστε να συντριβεί σε έναν μικρό αστεροειδή που ονομάζεται Δίμορφος. O Δίμορφος βρίσκεται σε τροχιά γύρω από έναν μεγαλύτερο αστεροειδή, τον Δίδυμο. Η εν λόγω αποστολή της NASA αναφέρεται επίσημα ως Double Asteroid Redirection Test, αλλά μπορεί να τη γνωρίζετε με την συντομογραφία της: DART.
Η ανάλυση των δεδομένων που λήφθησαν τις τελευταίες δύο εβδομάδες από την ερευνητική ομάδα της NASA DART δείχνει ότι η πρόσκρουση του διαστημικού σκάφους με τον αστεροειδή στόχο του, τον Δίμοφο, άλλαξε με επιτυχία την τροχιά του αστεροειδούς.
«Όλοι μας έχουμε ευθύνη να προστατεύσουμε τον πλανήτη μας. Τελικά, είναι το μόνο που έχουμε», δήλωσε ο ερευνητής της NASA, Bill Nelson. «Αυτή η αποστολή δείχνει ότι η NASA προσπαθεί να είναι προετοιμασμένη ώστε να αντιμετωπίσει έναν πραγματικά επικίνδυνο για την Γη αστεροειδή. Πρόκειται για μια στιγμή ορόσημο για την πλανητική άμυνα και όλη την ανθρωπότητα»
Πριν από την πρόσκρουση του DART, ο Δίμορφος χρειαζόταν 11 ώρες και 55 λεπτά για μια πλήρη περιφορά του γύρω από τον μεγαλύτερο μητρικό του αστεροειδή, τον Δίδυμο. Από την εσκεμμένη σύγκρουση του DART με τον Δίμορφο στις 26 Σεπτεμβρίου, οι αστρονόμοι χρησιμοποιούν τηλεσκόπια στη Γη για να μετρήσουν πόσο έχει μεταβληθεί η εν λόγω περίοδος περιφοράς. Η NASA επιβεβαίωσε ότι η πρόσκρουση του διαστημικού σκάφους άλλαξε την τροχιά του Δήμορφου γύρω από το Δίδυμο κατά 32 λεπτά, συντομεύοντας την περίοδο περιφοράς των 11 ωρών και 55 λεπτών σε 11 ώρες και 23 λεπτά. Αυτή η μέτρηση έχει ένα περιθώριο σφάλματος περίπου συν ή πλην 2 λεπτά.
Η NASA είχε θέσει ως στόχο μια ελάχιστη μεταβολή της περιόδου του Δίμορφου τα 73 δευτερόλεπτα. Αυτά τα πρώτα δεδομένα δεδομένα δείχνουν ότι το DART ξεπέρασε το ελάχιστο όριο πάνω από 25 φορές.
Για να κατανοήσουμε την επίδραση της ανάκρουσης από την εκτίναξη, χρειάζονται περισσότερες πληροφορίες σχετικά με τις φυσικές ιδιότητες του αστεροειδούς, όπως τα χαρακτηριστικά της επιφάνειάς του. Τα ζητήματα αυτά είναι ακόμα προς διερεύνηση. Εικόνες όπως η παρακάτω βοήθησαν τους επιστήμονες να κατανοήσουν την αλλαγή της τροχιάς που προκύπτει από την πρόσκρουση του DART.
Οι ερευνητές προσπαθούν να υπολογίσουν την συνολική μεταβολή της ορμής του Δίμορφου από τη σύγκρουση του DART με ταχύτητα περίπου 22.530 χιλιομέτρων την ώρα. Αυτό περιλαμβάνει περαιτέρω ανάλυση της «εκτόξευσης» – των πολλών τόνων βράχων του αστεροειδούς που μετατοπίστηκαν και εκτοξεύτηκαν στο διάστημα εξαιτίας της πρόσκρουσης. Η ανάκρουση από την εκτόξευση συντριμμιών ενίσχυσε σημαντικά το αποτέλεσμα της ώθησης του DART προς τον Δίμορφο – περίπου όπως ο αέρας που διαφεύγει από ένα τρύπιο μπαλόνι ωθεί το μπαλόνι προς την αντίθετη κατεύθυνση.
Η (απλή) Φυσική της σύγκρουσης του διαστημικού σκάφους με τον αστεροειδή
Σύμφωνα με τη NASA, η ταχύτητα πρόσκρουσης του DART ήταν περίπου υ1=6300 m/s, θεωρώντας ως σύστημα αναφοράς τον Δίμορφο. Δεδομένου ότι η μάζα του είναι DART m1=610 kg και του Δίμορφου είναι m2=5×109 kg, ένας μαθητής Β’ Λυκείου αν θεωρήσει την κρούση πλαστική σύμφωνα με την παραπάνω εικόνα, μπορεί εύκολα να υπολογίσει την ταχύτητα του συσσωματώματος – που θα είναι και η νέα ταχύτητα του αστεροειδούς. Αρκεί να εφαρμόσει την αρχή διατήρησης της ορμής και θα καταλήξει στην σχέση: . To αποτέλεσμα είναι περίπου 0,77 mm/s, μια πάρα πολύ μικρή τιμή. Μπορεί να εξετάσαμε το πρόβλημα θεωρώντας τον αστεροειδή ακίνητο, ωστόσο, αυτός ο υπολογισμός εξακολουθεί να ισχύει και για έναν εξωτερικό παρατηρητή που βλέπει τον αστεροειδή να κινείται, με την διαφορά ότι τώρα τα 0,77 mm/s θα είναι η μεταβολή της ταχύτητας του αστεροειδούς.
Κι αν η κρούση είναι τέλεια κεντρική ελαστική, ποιά θα ήταν η ταχύτητα του Δίμορφου αμέσως μετά την κρούση; (θεωρώντας πάλι τον Δίμορφο αρχικά ακίνητο). Στην περίπτωση αυτή ο μαθητής μπορεί να εφαρμόσει τις αρχές διατήρησης της ορμής και ενέργειας και να καταλήξει στη σχέση , η οποία δίνει την τιμή 1,54 mm/s – ακριβώς η διπλάσια τιμή σε σχέση με εκείνη που προέκυψε κατά την πλαστική κρούση. Κι αυτή η τιμή εξακολουθεί να ισοδυναμεί με μια πολύ μικρή μεταβολή της ταχύτητας του Δίμορφου.
Οι ελαστική και οι πλαστική κρούση είναι τα δύο ακραία σενάρια της σύγκρουσης, και σύμφωνα με τους παραπάνω υπολογισμούς ο καλύτερος τρόπος για να αλλάξει η τροχιά ενός αστεροειδούς είναι η ελαστική σύγκρουση.
Παρατηρώντας τις εικόνες του Δίμορφου μετά τη σύγκρουση, φαίνεται ότι υπάρχει υλικό που εκτοξεύθηκε από τον αστεροειδή. Δεδομένου ότι τα συντρίμμια κινούνται προς την αντίθετη κατεύθυνση από την αρχική κίνηση του DART, φαίνεται ότι το διαστημόπλοιο μερικώς αναπήδησε. Χωρίς εκτοξευόμενο υλικό, θα είχαμε κάτι πιο κοντά σε μια πλαστική σύγκρουση και μικρότερη μεταβολή στην ταχύτητα στου Δίμορφου.
Πώς μπορούμε να μετρήσουμε το αποτέλεσμα της σύγκρουσης;
Το σίγουρο είναι ότι ακόμα και με το καλύτερο σενάριο η μεταβολή της ταχύτητας του αστεροειδούς εξαιτίας της σύγκρουσης θα είναι πάρα πολύ μικρή, χιλιοστά ανά δευτερόλεπτο σύμφωνα με τους παραπάνω χονδρικούς υπολογισμούς.
Πως γίνεται να μετρηθεί μια τόσο ελάχιστη μεταβολή ταχύτητας;
Ευτυχώς ο Δίμορφος αποτελεί το ένα μέλος ενός διπλού συστήματος αστεροειδών. Περιφέρεται γύρω από τον μεγαλύτερο σύντροφό του, τον Δίδυμο. Κι αυτός είναι ένας από τους λόγους που η NASA επέλεξε να ‘χτυπήσει’ αυτόν τον στόχο.
Το κλειδί για τον υπολογισμό του αποτελέσματος της σύγκρουσης του DART με τον Δίμορφο ήταν η μέτρηση της περιόδου μιας πλήρους περιφοράς του Δίμορφου γύρω από τον Δίδυμο.
Ο Δίμορφος περιφέρεται γύρω από το Δίδυμο σύμφωνα με την ίδια φυσική που περιγράφει την περιφορά της Σελήνης γύρω από τη Γη. Aπλοποιώντας τα πράγματα θεωρώντας την τροχιά του Δίμορφου κυκλική και ότι η μάζα του (m) είναι αρκετά μικρότερη ως προς την μάζα του Δίδυμου (M), οπότε εφαρμόζοντας τον δεύτερο νόμο του Νεύτωνα για την κυκλική κίνηση , όπου η κεντρομόλος επιτάχυνση – παίρνουμε . Δεδομένου ότι , τελικά η περίοδος της περιφοράς του Δίμορφου γύρω από τον Δίδυμο θα είναι: . Αν μετά την κρούση η τροχιά του Δίμορφου εξακολουθεί να είναι κυκλική, τότε αν μετρήσουμε τη νέα περίοδο περιφοράς του, μπορούμε να εκτιμήσουμε την μεταβολή της ακτίνας της τροχιάς του εξαιτίας της πρόσκρουσης του διαστημικού σκάφους DART, χωρίς να χρειάζεται η μέτρηση της μικροσκοπικής μεταβολής της ταχύτητας του Δίμορφου από την σύγκρουση (που είναι ανέφικτη).
Πώς υπολογίζεται η νέα περίοδος περιφοράς του Δίμορφου;
Επειδή είναι πραγματικά δύσκολο να δούμε την ακριβή κίνηση του ίδιου του Δίμορφου, οι αστρονόμοι χρησιμοποιούν ένα κόλπο για την μέτρηση της περιόδου του.
Φανταστείτε ότι μπορείτε να δείτε το ηλιακό φως που αντανακλάται και από τους δύο αστεροειδείς. Αυτό θα παρήγαγε κάποιο επίπεδο έντασης φωτός που θα μπορούσε να ανιχνευθεί από ένα τηλεσκόπιο στη Γη. Καθώς ο μικρότερος αστεροειδής Δίμορφος περιφέρεται γύρω από τον μεγαλύτερο, διέρχεται από τη σκιά που ρίχνει ο Δίδυμος και μισή τροχιά μετά, ρίχνει για λίγο την σκιά του στον Δίδυμο. Έτσι η συνολική ένταση του φωτός που ανακλούν οι αστεροειδείς θα μειωθεί όταν μικρότερος βρίσκεται πίσω από τον μεγαλύτερο – θα αυξηθεί πάλι όταν επανεμφανιστεί και θα μειωθεί λιγότερο όταν βρεθεί μπροστά του.
Παρατηρώντας μόνο την μεταβολή στην ένταση του φωτός, μπορείτε να μετρήσετε την τροχιακή περίοδο. Αν αυτή μεταβληθεί, τότε θα ξέρετε ότι οφείλεται στην σύγκρουση του DART με τον Δίμορφο. Και το ωραίο είναι πως οι αστρονόμοι βρήκαν ότι μετά την σύγκρουση η περίοδος περιφοράς του Δίμορφου γύρω από τον Δίδυμο μειώθηκε κατά 32±2 λεπτά!
Φυσικά το ερώτημα εξακολουθεί να παραμένει: Μια τέτοια σύγκρουση με ένα ένα μικρό διαστημόπλοιο θα μπορούσε να εκτρέψει έναν επικίνδυνο για την Γη αστεροειδή; Η απάντηση, ως συνήθως, είναι ότι εξαρτάται. Δεν θα έχει ουσιαστικό αποτέλεσμα αν ο αστεροειδής βρίσκεται ήδη πολύ κοντά στη Γη…
Αλλά αν «κοιτάμε πάνω» και εντοπίσουμε τον αστεροειδή όταν θα βρίσκεται πολύ μακριά, τότε ακόμη και μια μικροσκοπική μεταβολή της ταχύτητάς του, ίσως να άλλαζε την τροχιά του ώστε να αποτραπεί η καταστροφή του πλανήτη μας.
Μας ενδιαφέρει λοιπόν να μάθουμε τι ακριβώς συμβαίνει όταν ένα διαστημόπλοιο συγκρούεται με έναν αστεροειδή. Κι αυτός είναι ο σκοπός της αποστολής DART.