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Fractals on a benchtop: Observing fractal dimension in a resistor network
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Our first experience of dimension typically comes in the intuitive Euclidean sense: a line is one
dimensional, a plane is two-dimensional, and a volume is three-dimensional. However, following
the work of Mandelbrot [1], systems with a fractional dimension, “fractals”, now play an important
role in science. The novelty of encountering fractional dimension, and the intrinsic beauty of many
fractals, have a strong appeal to students and provide a powerful teaching tool. I describe here
a low-cost and convenient experimental method for observing fractal dimension, by measuring the
power-law scaling of the resistance of a fractal network of resistors. The experiments are quick to
perform, and the students enjoy both the construction of the network and the collaboration required
to create the largest networks. Learning outcomes include analysis of resistor networks beyond
the elementary series and parallel combinations, scaling laws, and an introduction to fractional

dimension.

Examples of fractals from the natural world cover an
astonishing range and variety. The coastline of a country,
for example, retains the same general pattern of jagged-
ness over huge range of length scales, and is described by
a fractal dimension between one and two. Analogously,
the self-similar structures of ferns and broccoli, and the
forms of the respiratory and circulatory systems, can be
described as fractals. Fractals also appear in quantum
systems, such as “Hofstadter’s butterfly” which describes
the conductance of a two-dimensional system under a
magnetic field [2], and, more recently, the quantum trans-
port of electrons though a fractal nanostructure [3].

Despite their ubiquity, however, it is unusual for stu-
dents to encounter fractals in their undergraduate stud-
ies, especially in the laboratory. Some pioneering efforts
in this direction include the measurement of the fractal
dimension of crumpled paper balls [4, 5], the self-similar
structure of breads [6], and measuring the fractal dimen-
sion of cauliflower [7]. Although these experiments in-
deed yield estimates of the fractional dimension of these
objects, a slightly unsatisfactory aspect is the absence
of well-defined theoretical estimates to compare with the
results. In this note I describe a method to measure the
power-law scaling of the resistance of a fractal network
known as Sierpinski’s gasket (see Fig. 1), which can be
computed exactly. By measuring the resistance of several
system sizes, students are able to confirm the power-law
behaviour of the resistance, and extract the fractal di-
mension with high precision.

Let us first see how the dimension of a system influ-
ences its resistance. Fig. 2 shows a standard set-up; a
rectangular block of a material with resistivity p, that
has length L and cross-sectional area A, admits a cur-
rent of I when a potential difference is applied across
its length. The resistance of this block is simply given
by R = pL/A. Now let us consider making the cross-
section very small A = d? where d < L. This produces
an effectively one-dimensional conductor, and clearly its
resistance will scale linearly with its length, R o< L. Now
let us change one of the transverse dimensions to L, giv-
ing a cross-sectional area of A = Ld, so that the sample

FIG. 1. The fractal structure known as Sierpinski’s gasket
has the overall shape of an equilateral triangle, subdivided
recursively into smaller equilateral triangles. It is self-similar
at all length scales, so no matter how much one enlarges a
small area of the gasket, one encounters the same pattern of
recursively nested triangles.

forms a thin sheet. In this case we obtain the somewhat
counter-intuitive result that R is constant, that is, the re-
sistance of a two-dimensional conductor does not depend
on its area. Finally, if we consider a cube by setting
A= L2 it is clear that R oc 1/L. If we write the scaling
of the resistance as R o< L", we can combine these results
to show that the Euclidean dimension of the system, Dg,
is related to the scaling of the resistance by the relation:

n=2-Dg. (1)

Fractional dimension — Looking at Fig. 1, the Sier-
pinski gasket intuitively has a dimension that is smaller
than that of a standard two-dimensional triangle, but is
larger than a line. How can we define such a fractional
dimension? The key is to study how the size, or “hyper-
volume”, of an object increases as it is enlarged. For an



L

FIG. 2. Geometry to define the resistance of a block of mate-
rial with resistivity p. A current I enters and leaves through
the shaded faces which have each a cross-sectional area of A.
If the length of the block is L, its resistance is R = pL/A.

object with integer dimension D, doubling its side-length
increases its hypervolume by a factor of 2°. For exam-
ple, doubling the side-length of a square produces a new
square that is 4 times larger than the original indicating
that (as expected) D = 2, while doubling the side-length
of a cube increases its volume by a factor of 8, meaning
than D = 3. This permits an alternative definition of
dimension, the Hausdorff dimension, which agrees with
Dpg for integer dimensions, but can also be applied to
fractal objects. From Fig. 3 it is clear that doubling
the length of the triangle sides produces three copies of
the Sierpinski gasket; for example the n = 3 level net-
work has twice the side-length of the n = 2 network, and
contains three copies of it. Solving the relation 3 = 2P
reveals that the Hausdorff dimension of the Sierpinski
gasket is D = log, 3 ~ 1.585. As anticipated, this value
lies between 1 and 2.

Resistance scaling — 1t is tempting to obtain the scal-
ing of the resistance of Sierpinski’s gasket, measured be-
tween two of its exterior corners, by directly substituting
this value for D in Eq. 1. The fractal nature of the sys-
tem, however, means that we must calculate its resistance
with more care. Fig. 3 shows how the gasket can be pro-
duced by a recursive process. Level 1 (Fig. 3a) consists of
a single upward-pointing triangle. To reach level 2 (Fig.
3b) this triangle is enlarged by a factor of two, and then
subdivided to form three upward-pointing triangles. The
same procedure — scaling every upward-pointing triangle
by two and then subdividing into three — is then applied
to create the level 3 network (Fig. 3c). Continuing this
process indefinitely produces the true Sierpinski gasket
shown in Fig. 1.

The resistance of the level-1 configuration can be ob-
tained easily by expressing it in terms of series and par-
allel resistances. Higher levels are more challenging to
treat in this way, but can be analyzed (see Ref. [8]) using
the “star-triangle” method (also sometimes called A —Y
method), or applying nodal analysis [9]. However, an al-

(a) (b) (c)
n=2
n=3

FIG. 3. The fractal Sierpinski gasket shown in Fig.1 can be
obtained as the n — oo limit of recursively dividing a triangle.
Here we show the (a) n =1, (b) n = 2, and (c) n = 3 levels
of this process. Compare with the resistor networks shown
in Fig. 5 which provide a physical implementation of these
structures.
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FIG. 4. Current flowing through the (a) level-1 and (b) level-
2 approximations to Sierpinski’s gasket. Kirchoff’s laws are
used to find the currents flowing through each resistance.

ternative approach is to use Kirchoft’s laws. The level-2
system shown in Fig. 4b is sufficiently simple that the
internal currents can be obtained by the students (with
some prompting) through trial and error, noting that the
currents entering a node must equal the currents exiting
it, and that the sum of the currents around a closed loop
must be equal to zero. Alternatively it is straightforward
to write the simultaneous equations satisfied by the cur-
rents, and solve the problem algebraically. We can see
directly that the majority of the current flows along the
bottom edge, indicating that the current flow is predomi-
nantly one-dimensional, with the incursions into the bulk
of the system producing small modifications from this be-
haviour. Let us suppose that each side of every triangle
has a resistance of Ry. From the configurations of cur-



rent shown in Fig. 4 it can be seen that the net resistance
between the two corners of the level-1 system is given by
2Ry /3, while the level-2 resistance is 10Ry/9, the two dif-
fering by a factor of 5/3. That is to say, for the purposes
of measuring resistance by connecting external probes,
the level-2 network composed of resistors of value R can
be replaced by a level-1 network with resistors of 5R/3.

This process can be repeated to analyze ever-higher
fractal levels. A level-3 network (see Fig. 3c) can first be
reduced to a level-2 network by scaling the resistances by
a factor of 5/3, which, as seen above, can then be reduced
in turn to an level-1 network, introducing another factor
of 5/3. The resistance of a level-n network is thus given
by the power-law

R, = 2—];0 <Z)n_l . (2)

This form of analysis, finding a scaling law for the value
of a quantity as fine structure is successively eliminated,
is very similar to the real-space renormalization group
transformations used to analyze second-order phase tran-
sitions [10].

From this scaling analysis we now know the corner-
corner resistance of a level-n approximation to Sierpin-
ski’s gasket. It is also clear (see Fig. 3) that the side-
length of a level-n network is given by L = 2"~!. This
relationship can be used to eliminate (n — 1) from Eq. 2,
in order to obtain the dependence of the resistance on L.
Some straightforward algebra yields the result

_ 2R0 110g,(5/3) o 280 o.7ar
R(L) = 3 L ~ =3 L . (3)

If, as before, we write the scaling of the resistance as
R o L", we can thus obtain the exponent, 7, as:

e (0
n = =108, 3

=log,5—D (4)

where D = log, 3 is the Hausdorff dimension of the Sier-
pinski gasket. This equation is the fractional dimension
analogue to Eq. 1.

Implementation — To provide a physical realization of
the networks shown in Fig. 3, the basic triangular build-
ing block was obtained by soldering three 1 k{2 metal
film resistors (0.5W, tolerance 1%) in a triangle as shown
in Fig. ba. These blocks could then be connected with
jumper links, cheap and easily available components used
in microelectronics, to construct the various resistor net-
works. The corner-corner resistance can be easily mea-
sured using an ohmmeter, or alternatively by connect-
ing the network across a bench power supply and mea-
suring the input current and voltage dropped across it.
Having connected three triangular elements to create the
level-2 network, students can then build and connect fur-
ther copies to create the level-3 network, and so on. The
largest network used in practice was of level 5 (Fig. 6),

for which three groups of students can contribute their

FIG. 5. (a) The basic element of the resistor network, three 1
kQ resistors connected in a triangle. (b) Level-2 of the Sierpin-
ski gasket, obtained by connecting three triangular elements
with jumper links. (c) Level-3 of the Sierpinski gasket.

level-4 networks. In principle even higher orders can be
obtained, if sufficient triangular elements are prepared.

To observe the fractional scaling of the resistance, we
measure the corner-corner resistance for the different
fractal levels. From Eq. 3 it is clear that

log R = nlog L + log (2Ry/3) , (5)

where n = log, (5/3), and so making a log-log plot of
this data will yield a straight line with a slope of 7.
Fig. 7 shows some typical data obtained in this ex-
periment. Error bars were estimated from the statisti-
cal variance of the three resistances measured between
the pairs of exterior corners of each network. Making a
linear regression to these data points yields a value of
n = 0.743 £ 0.002, in excellent agreement with the theo-
retical value of n = 0.737. Students found it particularly
gratifying to obtain results of such high precision, using
such a “low-tech” construction method.

The students clearly enjoyed the process of building
the resistor networks, and the process allowed them to
become more engaged with the apparatus than normal.
In electricity and magnetism practicals, the majority of
the components are provided essentially as “black boxes”
to be plugged into circuit boards in highly specific ar-
rangements, and so the construction process proved to
be a stimulating change. In particular students exhibited
considerable pride in successfully completing the largest
(level-5) network which has a rather striking, and notably
fractal, appearance when laid out on the bench.
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FIG. 6. The highest level (n = 5) network considered in this
work, containing 81 triangular elements and 243 individual

resistors.
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FIG. 7. Power-law scaling of the corner-corner resistance in
a Sierpinski resistance network. The error bars on the data
points are smaller than the symbol size. The resistance follows
a power-law dependence on the side-length of the network,
following the theoretical result (Eq. 5, shown by the dashed
red line) to an excellent degree of accuracy. For comparison,
the linear scaling of a one-dimensional array of resistors is
shown by the black dashed line.
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