Η μάζα του σωματιδίου ταυ και η μυστηριώδης εξίσωση του Koide

| 0 ΣΧΟΛΙΑ

Η μάζα του λεπτονίου ταυ μετρήθηκε πρόσφατα από το πείραμα Belle II με εξαιρετική ακρίβεια. Άραγε, η νέα μέτρηση ενισχύει την πίστη στην περιβόητη εξίσωση του Koide;

Το πείραμα Belle II πραγματοποίησε την ακριβέστερη μέχρι σήμερα μέτρηση της μάζας του λεπτονίου τ. Στην δημοσίευση με τίτλο «Measurement of the τ-lepton mass with the Belle~II experiment» παρουσιάζεται μια μέτρηση της μάζας λεπτονίου τ που βασίστηκε σε ένα σύνολο περίπου 175 εκατομμυρίων γεγονότων της αντίδρασης e+e→τ+τ που συλλέχθηκαν με τον ανιχνευτή Belle II στον επιταχυντή SuperKEKB όπου πραγματοποιήθηκαν οι συγκρούσεις e+e σε ενέργεια κέντρου μάζας 10,579 GeV. Η μάζα του λεπτονίου τ που μετρήθηκε είναι: mτ = 1777,09 ± 0,08 ± 0,11 MeV/c2 όπου το πρώτο σφάλμα είναι το στατιστικό και το δεύτερο το συστηματικό. Επομένως, mτ =1777,09 ± 0,14 MeV/c2.

Το Καθιερωμένο Πρότυπο των στοιχειωδών σωματιδίων, μια μάλλον άσχημη θεωρία, περιγράφει με καλή προσέγγιση μέσα σε ορισμένα όρια, τις ιδιότητες και τις αλληλεπιδράσεις των θεμελιωδών σωματιδίων διαμέσου των ηλεκτρομαγνητικών, ασθενών πυρηνικών και ισχυρών πυρηνικών δυνάμεων.

Σύμφωνα με το Καθιερωμένο Πρότυπο, υπάρχουν δώδεκα διαφορετικοί τύποι στοιχειωδών σωματιδίων: έξι κουάρκ και έξι λεπτόνια. Παρά τις επιτυχίες του, το Καθιερωμένο Πρότυπο δεν είναι πλήρες, καθώς δεν εξηγεί την βαρυτική αλληλεπίδραση, ούτε την σκοτεινή ύλη ή την σκοτεινή ενέργεια, που πιστεύεται ότι αποτελούν το μεγαλύτερο μέρος της ύλης και της ενέργειας στο σύμπαν.
Οι έξι γνωστοί τύποι λεπτονίων διατάσσονται σε τρεις γενιές ή «γεύσεις»: το ηλεκτρόνιο και το νετρίνο του ηλεκτρονίoυ, το μιόνιο και το νετρίνο του μιονίου και το ταυ με το νετρίνο του ταυ:

Το ηλεκτρόνιο, το μιόνιο και το ταυ φέρουν ηλεκτρικό φορτίο, ενώ τα αντίστοιχα νετρίνα, όπως υποδηλώνει το όνομά τους, είναι ηλεκτρικά ουδέτερα. Το λεπτόνιο ταυ ανακαλύφθηκε από μια σειρά πειραμάτων μεταξύ 1974 και 1977 στο ερευνητικό κέντρο SLAC στις Ηνωμένες Πολιτείες. Οι φυσικοί μελετούν τις ιδιότητές του εδώ και δεκαετίες ώστε να κατανοήσουν καλύτερα τη συμπεριφορά του. Το λεπτόνιο τ είναι παρόμοιο με τα άλλα δύο φορτισμένα λεπτόνια, αλλά είναι πολύ βαρύτερο – περίπου 3.477 βαρύτερο από το ηλεκτρόνιο και περίπου 17 φορές βαρύτερο από το μιόνιο. Ωστόσο, σε αντίθεση με τα ελαφρύτερα ξαδέρφια του (ηλεκτρόνιο και μιόνιο), κάποιες ιδιότητες του λεπτονίου τ, όπως η μάζα του, δεν έχουν ακόμη μετρηθεί με μεγάλη ακρίβεια.

Οι ιδιότητες του ταυ είναι πολύ πιο δύσκολο να μελετηθούν από εκείνες του ηλεκτρονίου και του μιονίου, επειδή το σωματίδιο τ έχει μικρό χρόνο ζωής. Ενώ τα ηλεκτρόνια είναι σταθερά σωματίδια, η διάρκεια ζωής του μιονίου είναι περίπου 2 εκατομμυριοστά του δευτερολέπτου και η διάρκεια ζωής του ταυ είναι μικρότερη κατά 10 εκατομμύρια φορές! Σε περίπου 2,9×10-13 δευτερόλεπτα, το λεπτόνιο ταυ διασπάται σε ένα μποζόνιο W και ένα νετρίνο του ταυ.

Το μποζόνιο W, με τη σειρά του, μεταπίπτει είτε προς σε ένα ζεύγος κουάρκ – το οποίο δεν μπορεί να υπάρξει μεμονωμένα, αλλά πρέπει πάντα να συζευχθεί με άλλα κουάρκ για να σχηματίσει σύνθετα σωματίδια όπως τα μεσόνια – είτε προς ένα ζεύγος λεπτονίων – ένα ηλεκτρόνιο και ένα νετρίνο του ηλεκτρονίου ή ένα μιόνιο και ένα νετρίνο μιονίου. Υπάρχουν πάντα νετρίνα που εμπλέκονται στις διασπάσεις του σωματιδίου τ που όμως είναι αδύνατον να ανιχνευθούν με την τρέχουσα τεχνολογία. Για τους φυσικούς αυτό σημαίνει ότι μπορούν να πάρουν πληροφορίες για το σωματιδιο τ μόνο από ένα υποσύνολο των προϊόντων της διάσπασης. Έτσι, η μελέτη των ιδιοτήτων του λεπτονίου ταυ αποτελεί μια πρόκληση για τους φυσικούς των σωματιδίων. Ωστόσο, είναι σημαντικό να γνωρίζουμε τις ιδιότητες του σωματιδίου τ, όπως η μάζα, με όσο το δυνατόν μεγαλύτερη ακρίβεια για τον έλεγχο του Καθιερωμένου Προτύπου αλλά και την αναζήτηση ενδείξεων νέας φυσικής πέρα από αυτό.

Για παράδειγμα, υπάρχει μια προβλεπόμενη σχέση μεταξύ του ρυθμού διάσπασης του σωματιδίου τ προς ένα ελαφρύτερο λεπτόνιο και του χρόνου ζωής του για μια δεδομένη μετρούμενη μάζα ταυ. Αυτή η σχέση είναι πολύ ευαίσθητη στην τιμή της μάζας του. Χρησιμοποιώντας την μέση τιμή των μετρήσεων της μάζας του ταυ, 1776,86 ± 0,12 MeV/c2, από τα παλαιότερα πειράματα έως το 2022, οι φυσικοί βρίσκουν μια μικρή διαφορά σε σχέση με τη νέα μετρηθείσα τιμή. Αν αυτή η τάση αυξηθεί με πιο ακριβείς μετρήσεις, αυτό θα μπορούσε να σηματοδοτήσει την εμφάνιση νέας φυσικής πέραν του Καθιερωμένου Προτύπου.

Για την νέα μέτρηση της μάζας του σωματιδίου τ, οι φυσικοί μελέτησαν τις διασπάσεις του προς τρία πιόνια και ένα νετρίνο του ταυ. Έτσι προέκυψε η τιμή mτ = 1777,09 ± 0,08 ± 0,11 MeV/c2. Αυτή η μέτρηση εμφανίζει το μικρότερο σφάλμα από όλες τις προηγούμενες μετρήσεις.

Η μυστηριώδης εξίσωση του Koide

Το 1981 ο Yoshio Koide ανακάλυψε μια ανεξήγητη εμπειρική εξίσωση που συνδέει τις μάζες των τριών λεπτονίων, του ηλεκτρονίου, του μιονίου και του ταυ, ως εξής:

Q=\frac{m_{e} + m_{\mu} + m_{\tau}}{(\sqrt{m_{e}} + \sqrt{m_{\mu}} +\sqrt{m_{\tau}})^{2}} =0,666661(7) \cong \frac{2}{3}

όπου me = 0.510998946(3) MeV/c2, mμ = 105.6583745(24) MeV/c2, και mτ = 1776.86(12) MeV/c2 (η αποδεκτή τιμή της μάζας του τ μέχρι το 2022).

Ας σημειωθεί ότι αν α, b και c τρεις τυχαίοι θετικοί αριθμοί, τότε η ποσότητα  Q= \frac{a + b + c}{(\sqrt{a} + \sqrt{b} +\sqrt{c})^{2}}   παίρνει τιμές στο εύρος : \frac{1}{3} \leq Q \leq 1 .

Παρατηρείστε ότι όταν χρησιμοποιούμε τις μάζες των τριών λεπτονίων προκύπτει η τιμή τιμή 2/3 που είναι ο μέσος όρος των ακραίων τιμών της ποσότητας Q.

Τελικά η νέα μέτρηση ενισχύει την πίστη στην περιβόητη εξίσωση του Koide;

Xρησιμοποιώντας στην σχέση Koide την νέα μέτρηση μάζας mτ = 1777,09 (μαζί με τις me = 0.510998946 και mμ = 105.6583745) παίρνουμε: Q=0,666673. Αυτή η τιμή είναι μεγαλύτερη από την προηγούμενη, και απομακρύνεται από την αναμενόμενη κατά Koide τιμή Q = 2/3.

Προς το παρόν λοιπόν η νέα μέτρηση της μάζας του σωματιδίου ταυ κλονίζει την ισχύ της εξίσωσης Koide, χωρίς όμως να την αποκλείει εντελώς, εξαιτίας του μικρότερου μεν αλλά αρκετά μεγάλου σφάλματος. Έτσι, δεδομένου ότι mτ =1777,09 ± 0,14, το κάτω όριο της μάζας mτ=1777,09-0,14=1776,95, δίνει την τιμή Q=0,666666 !!

Πάντως, το πιο πιθανό είναι η σχέση Koide να είναι μια σύμπτωση, όπως για παράδειγμα το γεγονός ότι ο λόγος των μαζών πρωτονίου–ηλεκτρονίου ισούται με 6π5. Υπενθυμίζεται ότι το 2018 Yoshio Koide στην δημοσίευσή του «What Physics Does The Charged Lepton Mass Relation Tell Us?» , παραθέτει κάποιες νεότερες σκέψεις για την εξίσωσή του. 

Πηγή

Κατηγορίες:
Φυσική & Φιλοσοφία
web design by