κύμα (8 άρθρα)

Σέρφερ και φυσικοί δημιουργούν «το τέλειο κύμα»

| 0 ΣΧΟΛΙΑ

Κάθε χρόνο, χιλιάδες σέρφερ συρρέουν από τις τέσσερις γωνιές του πλανήτη για  να συναντηθούν στο σημείο με τις συντεταγμένες: 17° 83′ N, 149° 67′ W. Εκεί, στην πραγματικότητα, είναι το Τέαχπουο’ο, ένα χωριό στο νότιο άκρο της Ταϊτής, στη Γαλλική Πολυνησία. Λέγεται ότι εκεί μπορεί κανείς να βρει το τέλειο κύμα: έναν απαράμιλλο όγκο νερού, που μπορεί να φτάσει ακόμα και 7 μέτρα ύψος, πάνω από τον κοραλλιογενή ύφαλο.

radar-wave

Το σκαρί είναι έτοιμο, από πάνω θα ρίξουν το νερό

Το μεγαθήριο αυτό έρχεται μόνο μια φορά το χρόνο στο Τέαχπουο’ο, δεν υπάρχει δεύτερη ευκαιρία. Σύντομα όμως οι σέρφερ μπορεί και να μην το έχουν ανάγκη. Θα μπορούν να βασίζονται στην εμπειρία των επιστημόνων που με τη βοήθεια σούπερ υπολογιστών προσπαθούν να δημιουργήσουν το τέλειο κύμα «στο τραπέζι ενός εργαστηρίου που κατασκευάστηκε γι’ αυτόν τον σκοπό».

Οπως γράφει το Science, «μια ομάδα αθλητών και φυσικών προσπαθούν να επιτύχουν το τέλειο κύμα σε μια τεράστια περιοχή της ενδοχώρας στην Καλιφόρνια, σχεδόν 200 μίλια μακριά από τη θάλασσα» – εκεί που δημιουργήθηκε από το τίποτα «μια τεχνητή λεκάνη μήκους περίπου 700 μέτρων με μοναδικό σκοπό το σέρφινγκ».

Είναι μια λύση που θα μπορούσε να μειώσει τον αριθμό των ατυχημάτων στη θάλασσα: λίγες μόνο ημέρες νωρίτερα, ένας σέρφερ παρασύρθηκε από ένα γιγάντιο κύμα 15 μέτρων.

 

Κατηγορίες:
Φυσική & Φιλοσοφία

Louis de Broglie: Ο Πρίγκιπας της Φυσικής

| 0 ΣΧΟΛΙΑ

Ο Louis de Broglie (Μπρέιγ) ήταν αυτός που συνέβαλε αποφασιστικά στη γέννηση της επαναστατικής για την εποχή της, θεωρίας της κυματικής φύσης του ηλεκτρονίου, επεκτείνοντας τη διττή φύση του φωτός και στην ύλη. Βοήθησε μαζί με άλλους φυσικούς τη δημιουργία της Κυματικής Μηχανικής καθώς και στην ανάπτυξη  της κβαντικής θεωρίας.

Γεννήθηκε στις 15 Αυγούστου του 1892 στην Διέππη της Γαλλίας από οικογένεια ευγενών. Αφού τελείωσε το 1909 Λύκειο στο Παρίσι, στην αρχή δεν ενδιαφερόταν για να κάνει καριέρα στις επιστήμες αλλά να πάρει φιλολογικές σπουδές στο Πανεπιστήμιο. Εισήχθη λοιπόν στη Σορβόννη κάνοντας ιστορία, ώστε να συνεχίσει αργότερα στο διπλωματικό σώμα. Στην ηλικία των 18 απεφοίτησε αλλά ήδη άρχισε να ενδιαφέρεται για τα μαθηματικά και τη φυσική, όπως και μεγαλύτερος αδελφός του. Σε ηλικία 18 ετών άρχισε να μελετά συγχρόνως γαλλική ιστορία και φυσική. Αλλά μετά από έντονες διαμάχες με την οικογένεια του εγκατέλειψε τις σπουδές στην ιστορία και αφοσιώθηκε στη φυσική.

Το1910 άρχισε να σπουδάζει θεωρητική φυσική και να εκπονεί μια εργασία του. Το 1913 ο de Broglie βραβεύτηκε για αυτές τις θεωρητικές εργασίες του πάνω στη φυσική αλλά πριν ξεκινήσει την καριέρα του, άρχισε ο Α! Παγκόσμιος Πόλεμος. Υπηρέτησε τότε (1914-1918) στην ασύρματη τηλεγραφία του στρατού στον Πύργο του Eiffel. Κατά τη διάρκεια του πολέμου περνούσε το χρόνο του μελετώντας τεχνικά προβλήματα.

Μετά τον πόλεμο άρχισε να ελκύεται από τη μαθηματική φυσική. Έτσι εξηγούσε, αργότερα, ότι οι έρευνες του Planck το 1900 για την ακτινοβολία του μέλανος σώματος όπως και η δομή της ύλης, του τράβηξαν τη προσοχή.

Ασχολούμενος με τη μαθηματική φυσική, ο de Broglie ουδέποτε απόκτησε ενδιαφέρον για την πειραματική φυσική. Ο αδελφός του, Maurice de Broglie, δούλευε εκείνη την εποχή πειραματικά με τις ακτίνες-Χ, στο δικό του εργαστήριο που κατείχε στο Παρίσι, και μετέδωσε στον αδελφό του Louis, κατά τη διάρκεια των πρώτων ετών της δεκαετίας του 1920 που δούλευε το διδακτορικό του, ένα ενδιαφέρον για τα θέματα αυτά.

Το θέμα της διδακτορικής διατριβής του που ξεκίνησε το 1923 ήταν «Έρευνες πάνω στη θεωρία των κβάντα», τον έκανε να σκέπτεται πάνω στη θεωρία των κυμάτων των ηλεκτρονίων, βασισμένος στην εργασία του Αϊνστάιν και του Πλανκ. Ο Αϊνστάιν είχε διατυπώσει λίγα χρόνια νωρίτερα την άποψη πως το φως που είναι ένα κύμα μπορεί να συμπεριφέρεται σαν να αποτελείται από σωματίδια. Η θεωρία των Αϊνστάιν-Πλανκ τον προσανατόλισε στην θεωρία, για την οποία είναι γνωστός, τη δυαδικότητα σωματιδίου-κύματος, στην οποία η ύλη έχει ιδιότητες σωματιδιακές και κυματικές.

Στην διατριβή του ο Louis de Broglie αναφέρει τα εξής:

«Αφού τα φωτόνια δείχνουν συγχρόνως χαρακτηριστικές ιδιότητες σωματίων και κυμάτων, γιατί να μην συμβαίνει και το ίδιο με όλες τις μορφές της ύλης, γιατί δηλαδή τα σωματίδια να μη συμπεριφέρονται και ως κύματα».

Η πρόταση του απαντούσε στο ερώτημα που είχε ανακύψει κατά τους υπολογισμούς της κίνησης των ηλεκτρονίων του ατόμου. Από τα πειράματα είχε εξαχθεί το συμπέρασμα πως τα ηλεκτρόνια πρέπει να κινούνται γύρω από τον πυρήνα, αλλά για αδιευκρίνιστους μέχρι τότε λόγους υπήρχαν περιορισμοί στην κίνηση τους. Ο de Broglie σκέφθηκε πως το ηλεκτρόνιο πρέπει να εμφανίζει και ιδιότητες κύματος, για να μπορέσει να ξεπεράσει αυτούς τους περιορισμούς. Πράγματι μια κύμανση, που περικλείεται μέσα στα όρια τα οποία επιβάλλει η ύπαρξη του πυρηνικού φορτίου, θα υπόκειται σε περιορισμούς όσον αφορά το σχήμα και την κίνηση της, διότι θα είχε συμβάλει με τον εαυτό της με αποτέλεσμα την απόσβεση της.

Κατά τον de Broglie το ηλεκτρόνιο ή οποιοδήποτε άλλο σωματίδιο έχει κι’ αυτό διττή υπόσταση. Είναι σωματίδιο με ορμή p και κύμα με μήκος λ. Η σχέση που τα συνδέει πρέπει να είναι ίδια με αυτή που ισχύει στα φωτόνια:        ενώ η συχνότητα του μηχανικού κύματος θα δίνεται από τη σχέση:

Οι ιδέες που παρουσιάστηκαν στη διδακτορική του διατριβή, δεν είχαν επιβεβαιωθεί μέχρι τότε, αλλά επιβεβαιώθηκαν πλήρως από την ανακάλυψη της περίθλασης των ακτίνων των ηλεκτρονίων από κρυστάλλους το 1927 από τους Davisson, Kunsman και Germer στις ΗΠΑ (ανακάλυψη της περίθλασης των ηλεκτρονίων από κρυστάλλους), και από τον γιο του J. J. Thomson, τον G. P. Thomson στην Σκωτία. Η θεωρία του De Broglie για την κυματική φύση του ηλεκτρονίου χρησιμοποιήθηκε αργότερα από τους Schrödinger, Dirac και άλλους που ανέπτυξαν την Κυματική Μηχανική, μια σπουδαία θεωρία για να γνωρίσουμε τα φυσικά φαινόμενα σε ατομική κλίμακα.

Στην απονομή του βραβείου Nobel το 1929 εξήγησε το υπόβαθρο των ιδεών του που περιέχονταν στο διδακτορικό του.

Τριάντα χρόνια πριν, η φυσική διαιρέθηκε σε δυο στρατόπεδα: Τη φυσική της ύλης, βασισμένη στις ιδέες των σωματιδίων και ατόμων που υπάκουε ισχυρίζονταν ότι υπάκουε στους νόμους της Κλασσικής Νευτώνειας Μηχανικής, τη φυσική της ακτινοβολίας, βασισμένη στην ιδέα της κυματικής διάδοσης σε ένα υποθετικό συνεχές μέσο, τον αιθέρα. Αλλά αυτά τα δύο συστήματα της φυσικής δεν μπορούν να παραμείνουν χωρισμένα το ένα από το άλλο: Αυτά πρέπει να ενοποιηθούν μέσω της διατύπωσης μιας θεωρίας ανταλλαγών της ενέργειας μεταξύ ύλης και ακτινοβολίας.

Και σε ένα άλλο σημείο είπε:

“Από τη μια μεριά μας ενοχλεί το γεγονός ότι στην κβαντική θεωρία του φωτός ορίζουμε την ενέργεια του σωματίου ως συνάρτηση της συχνότητας Ε = hf. Αλλά μια αμιγής σωματιδιακή θεωρία δεν θα μας έδινε την δυνατότητα να ορίσουμε συχνότητα. Για τον λόγο αυτό στην περίπτωση του φωτός αναγκαζόμαστε να εισάγουμε ταυτόχρονα την ιδέα του σωματιδίου και του κύματος.

Από το άλλο μέρος γνωρίζουμε ότι, η σταθερότητα των τροχιών των ηλεκτρονίων στα άτομα, μας υποχρεώνει να εισάγουμε ακεραίους αριθμούς. Αλλά μέχρι τώρα τα μόνα φαινόμενα στη φυσική που περιέχουν ακεραίους είναι αυτό της συμβολής και των θεμελιωδών μορφών ταλάντωσης.

Αυτό μου έδωσε την ιδέα ότι τα ηλεκτρόνια δεν είναι μόνο σωματίδια, αλλά πρέπει να τα συνδέσουμε με κάποια περιοδικότητα….όσο για την ακτινοβολία, ειδικότερα για το φως, πρέπει να εισάγουμε άμεσα και ταυτόχρονα τη σωματιδιακή ιδέα και τη κυματική ιδέα. Με άλλα λόγια, και στις δύο περιπτώσεις πρέπει να υποθέσουμε την ύπαρξη της ύλης που συνοδεύεται από κύματα. Αλλά η ύλη και τα κύματα δεν μπορούν να είναι ανεξάρτητα επειδή, σύμφωνα με τον Bohr, αυτά είναι συμπληρωματικά το ένα του άλλου. Συμπερασματικά πρέπει να είναι δυνατόν να ιδρύσουμε ένα ορισμένο παραλληλισμό ανάμεσα στη κίνηση ενός σώματος  και τη διάδοση του κύματος το οποίο το συνοδεύει.

Επίσης σε μια συνέντευξη του το 1963 ο de Broglie περιέγραψε πως του βγήκαν οι ανακαλύψεις του:

Σε συνομιλίες με τον αδελφό μου πάντα καταλήγαμε στο συμπέρασμα πως όπως στην περίπτωση των ακτίνων-Χ είχαμε και κυματική και σωματιδιακή φύση, έτσι ξαφνικά το καλοκαίρι του 1923, μου ήρθε η ιδέα να επεκτείνω τη δυαδικότητα στα σωματίδια της ύλης, ειδικά στα ηλεκτρόνια. Και αναγνώρισα πως, η θεωρία των Hamilton-Jacobi από τη μια μεριά σκόπευε προς αυτή την κατεύθυνση, γι’ αυτό κατάφερα να επεκτείνω τη δυαδικότητα και στα σωματίδια. Αυτό αναπαριστά μια γεωμετρική οπτική. Από την άλλη στα κβαντικά φαινόμενα  βρίσκει κάποιος κβαντικούς αριθμούς, που σπάνια τα βρίσκεις στη μηχανική, όμως απαντώνται πολύ συχνά στα κυματικά φαινόμενα και σε όλα τα προβλήματα που σχετίζονται με την κίνηση των κυμάτων.

Μετά το διδακτορικό του παρέμεινε στη Σορβόννη διδάσκοντας για δύο χρόνια, σαν καθηγητής της θεωρητικής φυσικής στο Ινστιτούτο Henri Poincaré το 1928. Από το 1932 ήταν επίσης καθηγητής της θεωρητικής φυσικής στη Σχολή των Επιστημών στη Σορβόννη. Ο De Broglie δίδαξε εκεί μέχρι το 1962. Ήταν μέλος πολλών επιστημονικών ενώσεων (Γραφείο Μέτρων και Σταθμών, Γαλλικής Ατομικής Ενέργειας κλπ).

Μετά τη βράβευση του, το 1929, ο De Broglie δούλεψε πάνω στη κυματομηχανική. Δημοσίευσε εργασίες για τη θεωρία πάνω στο ηλεκτρόνιο του Dirac, στη νέα θεωρία του φωτός, για τη θεωρία του Uhlenbeck πάνω στο spin, και εφαρμογές της κυματομηχανικής πάνω στην πυρηνική φυσική.

Έγραψε είκοσι πέντε βιβλία μεταξύ άλλων τα «Waves and motions» (1926), «Wave mechanics» (1928), «la théorie de la double solution» (1956), «Non-linear Wave Mechanics: A Causal Interpretation» (1960), «Introduction to the Vigier Theory of elementary particles» (1963), και «The Current Interpretation of Wave Mechanics: A Critical Study» (1964).

Συνέγραψε εκλαϊκευμένα βιβλία φιλοσοφίας πάνω στη μοντέρνα φυσική, «Matter and Light: The New Physics» (1939), «The Revolution in Physics» (1953), «Physics and Microphysics» (1960), και «New Perspectives in Physics «(1962).

Το 1952 βραβεύτηκε από την UNESCO για τις προσπάθειες του για την κατανόηση της μοντέρνας φυσικής από το πλατύ κοινό. Αμέτρητες ήταν οι τιμητικές διακρίσεις μεταξύ άλλων και από το Πανεπιστήμιο Αθηνών.

Ο De Broglie περιέγραφε τον εαυτό του σαν καθαρό θεωρητικό παρά πειραματικό μηχανικό, έχοντας μεγάλη κλίση και αγάπη στην φιλοσοφική άποψη της φυσικής.

Το κεντρικό ζήτημα στη ζωή του de Broglie ήταν κατά πόσο η στατιστική φύση της ατομικής φυσικής αντανακλά μια  άγνοια της κατανόησης της θεωρίας ή αν η στατιστική είναι όλα όσα μπορούμε να γνωρίσουμε. Στο περισσότερο μέρος της ζωής του πίστευε την πρότερη, καίτοι ήταν ένας νεαρός ερευνητής που είχε αρχικά πιστέψει πως η στατιστική κρύβει την άγνοια μας. Μάλλον εκπληκτικά, , επέστρεψε σε αυτή την άποψη στο τελευταίο μέρος της ζωής του πως:

… Οι στατιστικές θεωρίες κρύβουν μια τελείως καθορισμένη και εξακριβώσιμη πραγματικότητα πίσω από μεταβλητές οι οποίες υπεκφεύγουν (κρύβονται) στις πειραματικές τεχνικές μας.

Ο Πρίγκιπας Louis-Victor de Broglie πέθανε στις 19 Μαρτίου του 1987.

Πηγή: physics4u.g

Κατηγορίες:
Φυσική & Φιλοσοφία

Ασκήσεις Φυσικής Γ΄ Λυκείου Κατεύθυνσης - Στιγμιοτυπο Κυματα (Μέρος 81)

| 0 ΣΧΟΛΙΑ

Κατηγορίες:
Ασκήσεις

Ασκήσεις Φυσικής Γ΄ Λυκείου Κατεύθυνσης - Στιγμιοτυπο Κυματα (Μέρος 78)

| 0 ΣΧΟΛΙΑ

Κατηγορίες:
Ασκήσεις

Ασκήσεις Φυσικής Γ΄ Γυμνασίου - Κύματα 3 (Μέρος 19)

| 0 ΣΧΟΛΙΑ

Κατηγορίες:
Ασκήσεις, Γ' Γυμνασίου

ΦΩΣ: Κύμα , σωματίδιο ή και τα δύο?

| 0 ΣΧΟΛΙΑ

Είναι το μεγαλύτερο και παλαιότερο από τα κβαντικά μυστήρια . Μας απασχολεί τουλάχιστον από την εποχή του αρχαίου Έλληνα φιλοσόφου Ευκλείδη. Πως άραγε παράγεται το φως; Από τα αρχαία χρόνια πίστευαν ότι το φως αποτελείται από μικρά σωματίδια τα οποία κινού­νται με πολύ μεγάλη ταχύτητα και, όταν πέφτουν στο μάτι του παρατηρητή, διεγείρουν το αισθητήριο όργανο της όρασης. Στη 'σωματιδιακή' φύση του φωτός, στηρίχτηκε ο Newton, για να διατυπώσει με βάση και τις αρχές της διατήρησης της ενέργειας και ορμής, το νόμο της ανάκλασης του φωτός.

Αργότερα, το 1865, όταν ο Maxwell απέδειξε ότι το φως είναι εγκάρσια ηλεκτρομαγνητικά κύματα. Στα χρόνια που ακολούθησαν αναπτύχθησαν πολλές θεωρίες και σήμερα πια πιστεύουμε στη διπλή φύση του φωτός, δηλαδή ότι το φως συμπεριφέρεται ως κύμα αλλά και ως σωματίδιο, που ονομάζεται φωτόνιο.

Σε φαινόμενα όπως η συμβολή, η περίθλαση και η πόλωση εκδηλώνεται η κυματική φύση του φωτός (ηλεκτρομαγνητικό κύμα), ενώ σε φαινόμενα που σχετίζονται με την αλληλεπίδραση του φωτός με την ύλη (απορρόφηση - εκπομπή), όπως το φωτοηλεκτρικό φαινόμενο, εκδηλώνεται η σωματιδιακή φύση του φωτός. Τα φαινόμενα της ανάκλασης και της διάθλασης ερμηνεύονται και με τις δύο φύσεις του.

Το φαινόμενο κατά το οποίο το φως συμπεριφέρεται άλλοτε σαν κύμα και άλλοτε σαν σωματίδιο είναι γνωστό ως κυματοσωματιδιακός δυϊσμός (wave–particle duality). Υποατομικά σωματίδια όπως τα ηλεκτρόνια επιδεικνύουν και αυτά την ίδια συμπεριφορά με το φως. Σας παρουσιάζουμε όσο μπορούμε πιο απλά κάποιες από τις αποδείξεις που ως τώρα χρησιμοποιήθηκαν για τον δυισμό αυτό.

photon_double_slit3 quantum_double_slit_photon

Το πείραμα της διπλής σχισμής

Το σχήμα μας επιτρέπει να δούμε μια κάτοψη του περίφημου πειράματος των δύο σχισμών , που επινόησε ο Γιάνγκ 200 χρόνια πριν. Το φώς που εκπέμπεται από μια σημειακή πηγή πέφτει σε μια πρώτη οθόνη που φέρει δύο σχισμές και σχηματίζει μια εικόνα στη δεύτερη οθόνη. Η εικόνα που σχηματίζεται έχει τη μορφή φωτεινών και σκοτεινών λωρίδων, που οναμάζονται κροσσοί συμβολής (βλ. την τρισδιάστατη εικόνα, πάνω ) και αποκαλύπτουν την κυματική φύση του φωτός. Όμως , ισχύει επίσης ότι το φώς αποτελείται από σωματίδια (τα φωτόνια) . Περιορίζοντας την εκπομπή του φωτός , μπορούμε να κάνουμε να περνά από τη συσκευή ένα μόνο φωτόνιο κάθε φορά , το οποίο θα πέφτει , στη συνέχεια, σε κάποιο συγκεκριμένο σημείο της οθόνης απεικόνισης. Μόλις μαζευτούν πολλά τέτοια σημεία, αρχίζουμε να διακρίνουμε ένα πιτσιλωτό μοτίβο συμβολής. Αυτό σημαίνει ότι ακόμα και τα επιμέρους φωτόνια πρέπει να "γνωρίζουν" την ύπαρξη των δύο σχισμών, παρόλο που υποτίθεται ότι κάθε επιμέρους φωτόνιο πρέπει να περάσει είτε από τη μία είτε από την άλλη. Εαν ο επιστήμονας που διεξάγει το πείραμα θελήσει σκόπιμα να δει από ποιά σχισμή περνάει το κάθε φωτόνιο, το μοτίβο συμβολής δε θα σχηματιστεί , με αποτέλεσμα να χαθεί η κυματική φύση του φωτός: το φως θα συμπεριφέρεται αμιγώς ως ροή σωματιδίων

basic_delayed_choice

Το πείραμα της καθυστερημένης επιλογής.

Ο Τζων Γουήλερ σκέφτηκε μια παραλλαγή του πειράματος που παρουσιάζεται στο παραπάνω σχήμα. Αντικατέστησε την οθόνη απεικόνισης με μια γρίλια (εδώ εμφανίζεται με κάθετες περσίδες) και τοποθέτησε από πίσω της ένα ζεύγος τηλεσκοπίων , το καθένα από τα οποία στραμμένος προς μια σχισμή . Μόλις πλησιάσει ένα φωτόνιο τη γρίλια ο πειραματιστής μπορεί να επιλέξει είτε να την αφήσει κλειστή , οπότε θα έχει το αποτέλεσμα του αρχικού περιάματος του Γιάνγκ (τους κροσσούς συμβολής όπως είναι στο αρχικό σχήμα), είτε να την ανοίξει , επιτρέποντας στα τηλεσκόπια να καταγράψουν από ποια σχισμή πέρασε το φωτόνιο. Πως μπορεί όμως , το φωτόνιο να "γνωρίζει" , την ώρα που περνά από την πρώτη οθόνη, ποιά θα είναι η απόφαση του πειραματιστή?

ureye

Η έμπνευση της στιγμής του πειραματιστή επηρεάζει τη φύση της πραγματικότητας (εν προκειμένω , αν το φωτόνιο είχε σωματιδιακή ή κυματική μορφή) στο παρελθόν.

Το πείραμα της καθυστερημένης επιλογής σε κοσμική κλίμακα

Θεωρητικά, το παραπάνω πείραμα μπορεί να διεξαχθεί και στο πεδίο της αστρονομίας. Το φως που εκπέμπει ένα μακρινό κβάζαρ , αφού καμπυλωθεί από τη βαρυτική στρέβλωση του χώρου που προκαλεί ένας γαλαξίας, συνεχίζει να κατευθύνεται προς τη Γη. Τα φωτόνια μπορούν να φτάσουν στη γη από δύο εναλλακτικά μονοπάτια, τα οποία αντιστοιχούν στις δύο σχισμές του πρωτότυπου πειράματος του Γιάνγκ

vote-being-made-into-a-ba-007

Η παραδοξότητα του πειράματος της καθυστερημένης επιλογής έγκειται στο εξής: Παρόλο που η κυματική ή σωματιδιακή φύση του φωτονίου καθορίζεται από την επιλογή του πειραματιστή , η παρατήρηση αυτή καθ αυτή συνδέεται άμεσα με το παρελθόν, ενδεχομένως με το πολύ μακρινό παρελθόν. Αυτό σημαίνει ότι η επιλογή που κάνει ο παρατηρητής σήμερα συν-διαμορφώνει τη φύση που είχε το σωματίδιο (κυματική ή σωματιδιακή ) στο παρελθόν, ενδεχομένως και στο πολύ μακρινό ! Αυτό δεν είναι ακριβώς το ίδιο με την προς τα πίσω αιτιότητα (η οποία θα σήμαινε ότι ο πειραματιστής μπορεί να στείλει πληροφορίες στο παρελθόν) αναμφίβολα όμως αφήνει μια έντονη γεύση τελολογίας!!

Ας το δούμε λίγο απλοικά μέσα από ένα animation :

Πηγές: Βιβλίο Συμπαντικό τζακ ποτ - Πωλ Ντέιβις , Δίκτυο,

by Αντικλείδι , http://antikleidi.wordpress.com

Κατηγορίες:
Βίντεο Φυσικής, Νέα

Παράδοση Φυσικής Γ' Γυμνασίου -Εισαγωγή στα κύματα (Μέρος 11)

0 ΣΧΟΛΙΑ

Κατηγορίες:
Θεωρία, Γ' Γυμνασίου, Παραδόσεις

Παράδοση Φυσικής Γ' Λυκείου Κατεύθυνσης Μέρος 17 (συμβολή κυμάτων)

0 ΣΧΟΛΙΑ

Κατηγορίες:
Θεωρία, Γ' Λυκείου Κατεύθυνσης, Παραδόσεις
web design by