μαθηματικά (11 άρθρα)

Μαθηματικά και Γλώσσα

| 0 ΣΧΟΛΙΑ

Κατηγορίες:
Βίντεο Φυσικής

Τα Μαθηματικά της Αγάπης – TED

| 0 ΣΧΟΛΙΑ

 

Η ομιλία Ted της Χάνα Φράι που εξηγεί πώς θα βρεις την αληθινή αγάπη μέσω των μαθηματικών. Αποδεικνύει με οξυδέρκεια, ευφυΐα και χιούμορ ότι τα μαθηματικά είναι ένα αναπάντεχα χρήσιμο εργαλείο για να διαπραγματευόμαστε τα πολύπλοκα, άλλοτε μπερδεμένα κι άλλοτε εξοργιστικά, μα πάντα ενδιαφέροντα, μαθηματικά μοντέλα της αγάπης.

 ——–  ——- ——–

 

——–  ——- ——–

Η ΟΜΙΛΙΑ

Στην αγαπημένη μου έρευνα γι’ αυτό το θέμα, που ονομάζεται, «Γιατί δεν έχω κοπέλα» — (Γέλια) ο Πίτερ Μπάκους προσπαθεί να εκτιμήσει την πιθανότητα να βρει την αγάπη. Ο Πίτερ δεν είναι άπληστος άνθρωπος. Απ’ όλες τις διαθέσιμες γυναίκες στο Ηνωμένο Βασίλειο, το μόνο που ψάχνει ο Πίτερ είναι κάποια που να μένει κοντά του, κάποια στο σωστό εύρος ηλικίας, κάποια με πτυχίο πανεπιστημίου, κάποια με την οποία μάλλον θα τα πάει καλά, κάποια που μάλλον θα είναι ελκυστική, κάποια που μάλλον θα τον βρει ελκυστικό. (Γέλια) Και του βγαίνει μια εκτίμηση με 26 γυναίκες σε ολόκληρο το Ηνωμένο Βασίλειο. Δεν φαίνονται καλά τα πράγματα, έτσι Πίτερ; Για να έχουμε μια προοπτική των πραγμάτων, είναι περίπου 400 φορές λιγότερες από τις καλύτερες εκτιμήσεις για το πόσες ευφυείς εξωγήινες μορφές ζωής υπάρχουν. Επίσης δίνει στον Πίτερ μία πιθανότητα στις 285.000 να συναντήσει κάποια από αυτές τις ξεχωριστές κυρίες σε μια νυχτερινή έξοδο. Πιστεύω ότι γι’ αυτό οι μαθηματικοί δεν ασχολούνται πια με τις νυχτερινές εξόδους.

Το θέμα είναι ότι προσωπικά δεν έχω τόσο απαισιόδοξη οπτική. Επειδή γνωρίζω, όπως και όλοι εσείς, ότι η αγάπη δεν λειτουργεί έτσι. Τα ανθρώπινα αισθήματα δεν έχουν τάξη, ούτε είναι λογικά και εύκολα προβλέψιμα. Αλλά επίσης ξέρω πως αυτό δεν σημαίνει ότι τα μαθηματικά δεν έχουν κάτι να μας προσφέρουν επειδή, η αγάπη, όπως και τα περισσότερα στη ζωή, είναι γεμάτη μοτίβα και τα μαθηματικά τελικά έχουν να κάνουν με τη μελέτη μοτίβων. Μοτίβα πρόβλεψης καιρού έως τα σκαμπανεβάσματα του χρηματιστηρίου, έως την κίνηση των πλανητών ή την ανάπτυξη των πόλεων. Ειλικρινά, τίποτα από αυτά δεν είναι τακτοποιημένο και εύκολα προβλέψιμο. Επειδή πιστεύω ότι τα μαθηματικά είναι τόσο ισχυρά, που έχουν τη δυνατότητα να μας προσφέρουν έναν νέο τρόπο να δούμε σχεδόν οτιδήποτε. Ακόμη και κάτι τόσο μυστηριώδες όσο η αγάπη. Κι έτσι, για να σας πείσω για το πόσο εκπληκτικά, εξαιρετικά και σχετικά είναι τα μαθηματικά, σας δίνω τις τρεις καλύτερες μαθηματικά επαληθεύσιμες συμβουλές μου για την αγάπη.

Λοιπόν, Συμβουλή Νο. 1: Πώς να κερδίσετε στα διαδικτυακά ραντεβού. Η αγαπημένη μου σελίδα διαδικτυακών γνωριμιών είναι η OkCupid, αν μη τι άλλο επειδή την ξεκίνησε μια ομάδα μαθηματικών. Επειδή είναι μαθηματικοί, συλλέγουν δεδομένα για οποιονδήποτε χρησιμοποιεί την ιστοσελίδα επί σχεδόν δέκα χρόνια. Προσπαθούν να βρουν μοτίβα στον τρόπο που μιλάμε για τον εαυτό μας και στον τρόπο που αλληλεπιδρούμε μεταξύ μας σε μια διαδικτυακή ιστοσελίδα γνωριμιών. Βρήκαν κάποια πολύ ενδιαφέροντα πράγματα. Αλλά το αγαπημένο μου είναι ότι τελικά σε μια διαδικτυακή σελίδα γνωριμιών, το πόσο ελκυστικός είσαι δεν έχει να κάνει με το πόσο δημοφιλής είσαι, και στην πραγματικότητα, το να πιστεύει ο κόσμος ότι είσαι άσχημος μπορεί να είναι προς το συμφέρον σου. Ας σας δείξω πώς λειτουργεί. Σε ένα ευτυχώς εθελοντικό κομμάτι του OkCupid, μπορείτε να βαθμολογήσετε πόσο ελκυστικούς βρίσκετε τους άλλους σε μια κλίμακα από το 1 έως το 5. Τώρα, αν συγκρίνουμε αυτό το σκορ, τον μέσο όρο, με το πόσα μηνύματα λαμβάνουν κάποια επιλεγμένα άτομα, αρχίζετε να παίρνετε μια ιδέα για τη σχέση γοητείας και δημοτικότητας σε μια ιστοσελίδα γνωριμιών.

Αυτό είναι το γράφημα που έφτιαξαν τα παιδιά στο OkCupid. Είναι σημαντικό να σημειώσουμε ότι δεν ισχύει απόλυτα ότι όσο πιο ελκυστικοί είστε, τόσο πιο πολλά μηνύματα θα λάβετε. Αλλά εγείρεται το ερώτημα για το τι συμβαίνει με αυτούς εδώ πάνω που είναι πολύ πιο δημοφιλείς από αυτούς εδώ κάτω αν και έχουν το ίδιο σκορ ελκυστικότητας; Ο λόγος είναι ότι το παρουσιαστικό δεν είναι το μόνο σημαντικό. Ας σας δείξω τα ευρήματά τους με ένα παράδειγμα. Παίρνετε κάποια σαν την Πόρσια ντε Ρόσι, για παράδειγμα, όλοι συμφωνούν ότι η Πόρσια ντε Ρόσι είναι μια πολύ όμορφη γυναίκα. Κανείς δεν πιστεύει ότι είναι άσχημη, αλλά δεν είναι και σούπερ μόντελ. Αν συγκρίνετε την Πόρσια ντε Ρόσι με κάποια σαν τη Σάρα Τζέσικα Πάρκερ, πολλοί άνθρωποι, κι εγώ ανάμεσά τους θα έλεγα, πιστεύουν ότι η Σάρα Τζέσικα Πάρκερ είναι πραγματικά υπέροχη και μάλλον είναι ένα από τα πιο όμορφα πλάσματα που έχουν πατήσει ποτέ στη Γη. Αλλά μερικοί, δηλαδή το μεγαλύτερο κομμάτι του διαδικτύου, φαίνεται να πιστεύουν ότι μοιάζει λιγάκι με άλογο. (Γέλια) Νομίζω ότι αν ρωτήσετε τον κόσμο πόσο ελκυστικές βρίσκουν τη Σάρα Τζέσικα Πάρκερ ή την Πόρσια ντε Ρόσι, και τους ζητήσετε να τους δώσουν ένα σκορ από το 1 έως το 5, πιστεύω ότι κατά μέσο όρο θα έχουν περίπου το ίδιο σκορ. Αλλά ο τρόπος που θα ψήφιζε ο κόσμος θα ήταν πολύ διαφορετικός. Η βαθμολογία της Πόρσια θα μαζευτεί γύρω στο 4, επειδή όλοι συμφωνούν ότι είναι πολύ όμορφη, ενώ η Σάρα Τζέσικα Πάρκερ διχάζει τελείως τις απόψεις. Θα υπήρχε ένα μεγάλο χάσμα στη βαθμολογία της. Αυτό που μετράει όμως είναι αυτό το χάσμα. Αυτό το χάσμα σας κάνει πιο δημοφιλή σε μια ιστοσελίδα διαδικτυακών γνωριμιών. Αυτό που σημαίνει είναι ότι αν μερικοί πιστεύουν ότι είστε γοητευτικοί, είναι καλύτερα να έχετε μερικούς άλλους να σας βρίσκουν κακάσχημους. Είναι πολύ καλύτερα από το να πιστεύουν όλοι ότι είστε η ομορφούλα γειτόνισσα.

 

Νομίζω ότι αυτό αρχίζει να γίνεται πιο κατανοητό όταν σκεφτείτε ποιος στέλνει αυτά τα μηνύματα. Έστω ότι πιστεύετε ότι κάποιος είναι γοητευτικός, αλλά υποψιάζεστε ότι οι άλλοι ίσως να μην ενδιαφερθούν και τόσο. Αυτό σημαίνει ότι θα έχετε μικρότερο ανταγωνισμό και είναι ένα επιπλέον κίνητρο για να επικοινωνήσετε. Συγκρίνετέ το με το αν βρίσκετε κάποιον γοητευτικό αλλά υποψιάζεστε ότι όλοι θα τον βρίσκουν γοητευτικό. Γιατί να ασχοληθείτε και να ντροπιαστείτε, ας είμαστε ειλικρινείς. Εδώ έρχεται το ενδιαφέρον κομμάτι. Επειδή όταν ο κόσμος επιλέγει τη φωτογραφία που θα χρησιμοποιήσει, συχνά προσπαθεί να ελαχιστοποιήσει τα πράγματα που πιστεύει ότι μερικοί δεν θα βρουν ελκυστικά. Το κλασικό παράδειγμα είναι άτομα που είναι -ίσως- λιγάκι υπέρβαρα και επιλέγουν επίτηδες μια φωτογραφία που έχει ψαλιδιστεί αρκετά, ή φαλακροί άντρες, για παράδειγμα, επιλέγουν επίτηδες φωτογραφίες που φοράνε καπέλα. Αλλά πρέπει να κάνετε ακριβώς το αντίθετο αν θέλετε να έχετε επιτυχία. Αντιθέτως, θα πρέπει να δώσετε έμφαση σε ό,τι σας κάνει διαφορετικό, ακόμη κι αν νομίζετε ότι μερικοί δεν θα το βρουν ελκυστικό. Επειδή σε όσους αρέσετε, θα αρέσατε έτσι κι αλλιώς και οι ασήμαντοι χαμένοι που δεν τους αρέσετε, είναι προς το συμφέρον σας.

Τότε, το ερώτημα είναι, πώς ξέρετε πότε είναι η σωστή στιγμή να κατασταλάξετε αν σκεφτείτε με πόσους μπορείτε να βγείτε ραντεβού στη ζωή σας; Ευτυχώς, μπορούμε να χρησιμοποιήσουμε ένα ζουμερό κομμάτι μαθηματικών για να μας βοηθήσει, που ονομάζεται θεωρία βέλτιστης παύσης. Ας φανταστούμε, λοιπόν, ότι ξεκινάτε να βγαίνετε ραντεβού στα 15, και ιδανικά, θα θέλατε παντρευτείτε μέχρι τα 35 σας. Υπάρχουν πολλά άτομα με τα οποία θα μπορούσατε να βγείτε ραντεβού στη ζωή σας, σε διάφορα επίπεδα καταλληλότητας. Αφού εξαργυρώσετε την επιτυχία και παντρευτείτε, δεν μπορείτε να δείτε μπροστά τι θα μπορούσατε να έχετε, ούτε μπορείτε να πάτε πίσω και ν’ αλλάξετε γνώμη. Τουλάχιστον από την εμπειρία μου, βρίσκω ότι συνήθως δεν αρέσει και τόσο στους ανθρώπους να τους ανακαλούν χρόνια αφού τους έχουν προσπεράσει για κάποιον άλλον, ή ίσως να το πιστεύω εγώ.

Τα μαθηματικά λένε ότι αυτό που πρέπει να κάνετε στο πρώτο 37 τοις εκατό του περιθωρίου των ραντεβού σας, είναι να τους αποκλείσετε όλους για ενδεχόμενο σοβαρό γάμο. (Γέλια) Και μετά, θα πρέπει να επιλέξετε το επόμενο άτομο που θα τύχει και είναι καλύτερο από όλους όσους έχετε δει πιο πριν. Να ένα παράδειγμα. Αν το κάνετε αυτό, και μπορεί να αποδειχτεί μαθηματικά, ότι είναι ο καλύτερος δυνατός τρόπος να μεγιστοποιήσετε τις πιθανότητές σας στην εύρεση του τέλειου συντρόφου. Δυστυχώς, πρέπει να σας πω ότι αυτή η μέθοδος έχει μερικά ρίσκα. Για παράδειγμα, φανταστείτε ότι ο τέλειος σύντροφος εμφανιζόταν κατά τη διάρκεια του πρώτου 37 τοις εκατό. Δυστυχώς θα πρέπει να τον απορρίψετε. (Γέλια) Αν ακολουθείτε τα μαθηματικά, φοβάμαι ότι δεν θα βρεθεί κανένας καλύτερος από όλους όσους είχατε δει πριν, έτσι θα πρέπει να συνεχίσετε απορρίπτοντάς τους όλους και να πεθάνετε μόνοι. (Γέλια) Ίσως περιτριγυρισμένοι από γάτες που να τσιμπολογάνε τα απομεινάρια σας.

Ένα άλλο ρίσκο τώρα, ας φανταστούμε αντιθέτως ότι τα πρώτα άτομα με τα οποία βγήκατε ραντεβού στο πρώτο 37 τοις εκατό είναι απίστευτα μονότονα, βαρετά, απαίσια άτομα. Δεν πειράζει, επειδή είστε στη φάση της απόρριψης, οπότε μπορείτε να τους απορρίψετε. Αλλά φανταστείτε ότι μετά, το επόμενο άτομο που θα συναντήσετε είναι οριακά λιγότερο μονότονο, βαρετό και απαίσιο απ’ όλους όσους έχετε δει πιο πριν. Αν ακολουθείτε τα μαθηματικά, φοβάμαι ότι θα πρέπει να τον παντρευτείτε και να καταλήξετε σε μια σχέση που φοβάμαι πως δεν είναι η βέλτιστη. Συγγνώμη γι’ αυτό. Αλλά νομίζω ότι εδώ υπάρχει μια ευκαιρία να επωφεληθεί από αυτό η Χάλμαρκ και να τροφοδοτήσει αυτή την αγορά. Μια κάρτα Αγίου Βαλεντίνου σαν αυτήν. (Γέλια) «Αγαπημένε μου σύζυγε, είσαι οριακά λιγότερο χειρότερος απ’ ό,τι το πρώτο 37 τοις εκατό των ατόμων με τους οποίους έχω βγει ραντεβού». Είναι πιο ρομαντικό απ’ ό,τι καταφέρνω συνήθως.

Αυτή η μέθοδος δεν σας δίνει ποσοστό επιτυχίας 100 τοις εκατό, αλλά δεν υπάρχει άλλη στρατηγική που να μπορεί να τα πάει καλύτερα. Στη φύση, υπάρχουν κάποια είδη ψαριών που ακολουθούν και χρησιμοποιούν αυτήν ακριβώς τη στρατηγική. Απορρίπτουν όλους τους μνηστήρες στο πρώτο 37 τοις εκατό της εποχής ζευγαρώματος, και μετά επιλέγουν το επόμενο ψάρι που έρχεται μετά από αυτό το παράθυρο που είναι, δεν ξέρω, μεγαλύτερο και πιο εύσωμο απ’ όλα τα άλλα ψάρια που είδαν πιο πριν. Επίσης πιστεύω ότι υποσυνείδητα, το κάνουμε αυτό εμείς οι άνθρωποι. Μας δίνουμε λίγο περισσότερο χρόνο να κάνουμε παιχνίδι, να πάρουμε μια ιδέα για την αγορά όταν είμαστε νέοι. Και τότε μόνο αρχίζουμε να ψάχνουμε σοβαρά πιθανούς υποψήφιους για γάμο μόλις φτάσουμε τα 25 με 30. Νομίζω ότι αυτό είναι αδιαμφισβήτητη απόδειξη, αν χρειάζεται, ότι οι εγκέφαλοι είναι προγραμματισμένοι να είναι λίγο μαθηματικοί.

Αυτή ήταν η Συμβουλή Νο. 2. Τώρα, η Συμβουλή Νο. 3: Πώς να αποφύγετε το διαζύγιο. Ας φανταστούμε ότι επιλέξατε τον τέλειο για σας σύντροφο και κατασταλάζετε σε μια ισόβια σχέση μαζί τους. Θέλω να πιστεύω ότι ιδανικά όλοι θα ήθελαν να αποφύγουν το διαζύγιο, εκτός από, δεν ξέρω, ίσως τη γυναίκα του Πιρς Μόργκαν; Είναι όμως ένα δυσάρεστο δεδομένο της μοντέρνας ζωής ότι ένας στους δύο γάμους στις Ηνωμένες Πολιτείες καταλήγει σε διαζύγιο, με τον υπόλοιπο κόσμο να ακολουθεί από κοντά. Τώρα, ίσως να σας συγχωρέσουμε που πιστεύετε ότι οι λογομαχίες που προηγούνται μιας συζυγικής διάλυσης δεν είναι ο ιδανικός υποψήφιος για μαθηματική εξέταση. Αφενός, είναι πολύ δύσκολο να γνωρίζετε τι πρέπει να μετρήσετε ή τι πρέπει να ποσοτικοποιήσετε. Αλλά αυτό δεν εμπόδισε έναν ψυχολόγο, τον Τζον Γκότμαν, που έκανε ακριβώς αυτό. Ο Γκότμαν παρατήρησε εκατοντάδες ζευγάρια που συζητούσαν και κατέγραψε ό,τι μπορείτε να φανταστείτε. Κατέγραψε τι ειπώθηκε στη συζήτηση, κατέγραψε την αγωγιμότητα του δέρματός τους, κατέγραψε τις εκφράσεις του προσώπου τους, τον καρδιακό τους ρυθμό, την αρτηριακή τους πίεση, βασικά όλα εκτός από το αν η σύζυγος είχε όντως πάντα δίκιο ή όχι, που παρεμπιπτόντως είχε. Αλλά αυτό που βρήκε ο Γκότμαν και η ομάδα του ότι ήταν ένας από τους πιο σημαντικούς προγνωστικούς παράγοντες για το αν θα πάρει διαζύγιο ή όχι ένα ζευγάρι ήταν το πόσο θετικός ή αρνητικός ήταν κάθε σύντροφος στη συζήτηση.

Τα ζευγάρια με χαμηλό ρίσκο πήραν πολλούς περισσότερους θετικούς πόντους στην κλίμακα Γκότμαν, απ’ ό,τι αρνητικούς. Ενώ σε κακές σχέσεις, και με αυτό εννοώ, που μάλλον θα πάρουν διαζύγιο, βρήκαν τους εαυτούς τους σε έναν φαύλο κύκλο αρνητικότητας. Απλώς χρησιμοποιώντας αυτές τις πολύ απλές ιδέες, ο Γκότμαν και η ομάδα του μπόρεσαν να προβλέψουν αν κάποιο ζευγάρι θα έπαιρνε διαζύγιο με ακρίβεια 90 τοις εκατό. Αλλά μόνο όταν συνεργάστηκε με έναν μαθηματικό, τον Τζέιμς Μάρεϊ, άρχισαν να καταλαβαίνουν πραγματικά τι προκαλεί αυτούς τους φαύλους κύκλους αρνητικότητας και πώς εμφανίζονται. Τα αποτελέσματα που βρήκαν νομίζω ότι είναι απίστευτα εντυπωσιακά απλά και ενδιαφέροντα. Αυτές οι εξισώσεις προβλέπουν πώς θα ανταποκριθεί η σύζυγος ή ο σύζυγος όταν έρθει η σειρά τους στη συζήτηση, πόσο θετικοί ή αρνητικοί θα είναι. Και αυτές οι εξισώσεις εξαρτώνται από τη διάθεση των ατόμων όταν είναι μόνοι τους, τη διάθεση των ατόμων όταν είναι με τον σύντροφό τους, αλλά πιο σημαντικό, εξαρτώνται από το πόσο ο σύζυγος και η σύζυγος επηρεάζουν ο ένας τον άλλον.

Αλλά ο πραγματικά σημαντικός όρος σε αυτή την εξίσωση είναι η επιρροή που έχουν μεταξύ τους οι άνθρωποι, και συγκεκριμένα, κάτι που ονομάζεται το κατώφλι της αρνητικότητας. Το κατώφλι της αρνητικότητας, μπορείτε να το σκεφτείτε ως το πόσο ενοχλητικός μπορεί να είναι ο σύζυγος πριν αρχίσει να τσαντίζεται πραγματικά η σύζυγος, και το αντίθετο. Πάντα πίστευα ότι οι καλοί γάμοι είχαν να κάνουν με τον συμβιβασμό και την κατανόηση και το να επιτρέπουμε στον άλλον να έχει χώρο να είναι ο εαυτός του. Θα πίστευα ότι ίσως οι πιο επιτυχημένες σχέσεις ήταν αυτές με πολύ υψηλό κατώφλι αρνητικότητας. Όπου τα ζευγάρια το άφηναν να περάσει έτσι και ανέφεραν κάτι μόνο αν πίστευαν ότι ήταν πολύ σημαντικό. Στην πραγματικότητα όμως, τα μαθηματικά και τα επακόλουθα ευρήματα της ομάδας έδειξαν ότι αληθεύει ακριβώς το αντίθετο. Τα καλύτερα ζευγάρια, ή τα πιο επιτυχημένα ζευγάρια, είναι αυτά με πολύ χαμηλό κατώφλι αρνητικότητας. Είναι τα ζευγάρια που δεν αφήνουν τίποτα να περάσει απαρατήρητο και επιτρέπουν ο ένας στον άλλον να έχει χώρο για παράπονα. Είναι τα ζευγάρια που συνεχώς προσπαθούν να διορθώσουν τη σχέση τους, που έχουν μια πολύ θετικότερη εικόνα για τον γάμο τους. Τα ζευγάρια που δεν αφήνουν τίποτα να περάσει και τα ζευγάρια που δεν αφήνουν τα μικροπράγματα να γίνουν πολύ σημαντικά.

Αυτές είναι οι τρεις συμβουλές μου για το πώς τα μαθηματικά μπορούν να βοηθήσουν με την αγάπη και τις σχέσεις. Αλλά ελπίζω ότι εκτός από τη χρήση τους ως συμβουλές, θα σας δώσουν και λίγη γνώση σχετικά με τη δύναμη των μαθηματικών. Επειδή για μένα, οι εξισώσεις και τα σύμβολα δεν είναι απλώς ένα πράγμα. Είναι μια φωνή που μιλά για τον απίστευτο πλούτο της φύσης και την εντυπωσιακή απλότητα στα μοτίβα που μας περιτριγυρίζουν, από το πώς λειτουργεί ο κόσμος έως πώς θα πρέπει να συμπεριφερόμαστε. Ελπίζω ότι ίσως για μερικούς από σας, λίγη γνώση για τα μαθηματικά της αγάπης μπορεί να σας πείσει να έχετε λίγη περισσότερη αγάπη για τα μαθηματικά. Σας ευχαριστώ. (Χειροκρότημα)

_______________________

H δρ Xάνα Φράι είναι μαθηματικός στο UCL, στο Κέντρο Χωρικής Ανάλυσης (CASA). Στη δουλειά της χρησιμοποιεί τα μαθηματικά μοντέλα προκειμένου να μελετήσει τα μοτίβα της ανθρώπινης συμπεριφοράς, από τις επαναστάσεις και την τρομοκρατία μέχρι το εμπόριο και τις καθημερινές μας αγορές.

Παράλληλα με την ακαδημαϊκή θέση της, είναι πρέσβειρα του UCL, μεταφέροντας έτσι την απόλαυση των μαθηματικών από τα πανεπιστημιακά αμφιθέατρα σε θέατρα, μπαρ και σχολεία. Είναι επίσης συμπαρουσιάστρια στο Υoutube Channel του BBC Worldwide και εμφανίζεται τακτικά στην τηλεόραση και το ραδιόφωνο στη Μεγάλη Βρετανία.

by Αντικλείδι , https://antikleidi.com

Κατηγορίες:
Και κάτι άλλο..., Νέα

Όλα τα μαθηματικά σε ένα όμορφο video

| 0 ΣΧΟΛΙΑ

Κατηγορίες:
Νέα

Τα αναπάντεχα μαθηματικά πίσω από την “Έναστρη νύχτα” του Van Gogh

| 0 ΣΧΟΛΙΑ

 

Η Έναστρη Νύχτα είναι ένας από τους πιο διάσημους ζωγραφικούς πίνακες του Ολλανδού μετα-ιμπρεσιονιστή ζωγράφου Βίνσεντ βαν Γκογκ. Απεικονίζει τη θέα από το δυτικό παράθυρο του δωματίου του, στο άσυλο Σεν Ρεμί ντε Προβάνς, μόλις πριν την ανατολή του ηλίου, τον Ιούνιο του 1889.

Γράφει ο ζωγράφος στον αδερφό του στις 23 Μαΐου του 1889: «Μέσα από το παράθυρο με τα σιδερένια κάγκελα, μπορώ να διακρίνω ένα τετράγωνο κομμάτι γης με σιτάρι… πάνω από το οποίο, το πρωί, βλέπω τον ήλιο να ανατέλλει σε όλο του το μεγαλείο.»

Ο Βέρνερ Καρλ Χάιζενμπεργκ (νόμπελ φυσικής 1932) είχε πει : “Όταν συναντήσω τον Θεό θα τού θέσω δύο ερωτήματα: γιατί σχετικότητα; Και γιατί τυρβώδης ροή; Πιστεύω ειλικρινά ότι για το πρώτο θα έχει μια απάντηση να μου δώσει”.

Η Natalya Clair δείχνει στο παρακάτω video πώς ο Van Gogh κατανόησε αυτό το βαθύ μυστήριο της κίνησης, της ρευστότητας και του φωτός στο έργο του.

(Υπάρχει μετάφραση στα ελληνικά την οποία μπορείτε να επιλέξετε από το κουμπί των ρυθμίσεων στην μπάρα του video)

Αντικλείδι , http://antikleidi.com

Κατηγορίες:
Νέα

Πως τα μαθηματικά και η φιλοσοφία διατηρούν μια ιδιαίτερη ερωτική σχέση

| 0 ΣΧΟΛΙΑ
 

 

Αδιαμφισβήτητα, μαθηματικά και φιλοσοφία είναι δυο διαφορετικές επιστήμες. Ειδικότερα στην εποχή μας, όπου κάθε επιστήμη εμβαθύνει όσο το δυνατόν παραπάνω στην εξειδίκευση, όπου κάθε σχολή έχει τη τάση να διαφοροποιείται από τις διπλανές της, η βαθιά και σημαντική σχέση που διατηρούσαν οι θεωρητικές και οι θετικές επιστήμες έχει αποδυναμωθεί εμφανώς.

Προφανώς και οι ανάγκες που έχουν δημιουργηθεί στη σημερινή εποχή, ως ένα σημείο «εμποδίζουν» τη συστηματική ενασχόληση με θεματικούς κύκλους που ξεφεύγουν από το καθαρό γνωστικό αντικείμενο κάθε επιστήμονα. Η τεχνολογική ανάπτυξη σίγουρα έχει «βοηθήσει» στο διαχωρισμό κάθε επιστήμης. Η πλήρης αφοσίωση κάθε επιστήμονα στα… γνωστά μονοπάτια του αντικειμένου του όμως ήδη εμφανίσει αρνητικά στοιχεία.

Οταν ο Πλάτωνας δημιουργούσε τη φημισμένη σχολή του το 387 π.Χ, φρόντισε με μια επιγραφή σε κεντρικό κτίριο να περάσει ένα σημαντικότατο μήνυμα. Το ρητό «Μηδείς αγεωμέτρητος εισίτω μου την στέγην» εξηγούσε ακριβώς τη στάση που κρατούσε ο αρχαίος φιλόσοφος απέναντι στα μαθηματικά, την επιστήμη που πλέον κανένας θεωρητικός επιστήμονας δεν… παίρνει στα σοβαρά.

Σε όλες τις εποχές της κουλτούρας και της μάθησης υπήρξαν φιλόσοφοι-μαθηματικοί και μαθηματικοί–φιλόσοφοι. Ο γνωστός μαθηματικος Μπερνάντ Μπολζάνο, το 19ο αιώνα είχε δηλώσει πως: «Ενας αδύνατος μαθηματικός δεν θα γίνει ποτέ δυνατός φιλόσοφος.» Η σχέση που συνδέει μαθηματικά και φιλοσοφία, αλλά και γενικότερα θεωρητικές και θετικές επιστήμες, είναι τόσο δυνατή που δεν μπορεί να περνά ανυπολόγιστη από όσους επιστήμονες θέλουν να διακριθούν.

Ο βασικός συνδετικός κρίκος μεταξύ των δυο επιστήμων είναι η έννοια της λογικής, Οποιος έχει εμβαθύνει έστω και λίγο σε κάποια θεωρητική ή θετική επιστήμη, γνωρίζει τη βασική τους λογική. Είτε μαθηματικά είτε φιλοσοφία όμως, ο τρόπος σκέψης είναι κατά βάση ίδιος. Η λογική της απόδειξης, της πλήρους τεκμηρίωσης κάθε δεδομένου που προκύπτει, είναι κοινή και για τις δύο επιστήμες. Τα λογικά βήματα που ακολουθούνται, είναι σε μεγάλο βαθμό κοινά.

Φιλοσοφία και μαθηματικά είναι δυο επιστήμες που αναπτύσσονται ταυτόχρονα. Το εντυπωσιακό χαρακτηριστικό τους όμως είναι πως και όσο διαφορετικά και να δείχνουν, αλληλοστηρίζονται ώστε να αναπτυχθούν. Το πρακτικό στοιχείο των μαθηματικών βοηθά την εξέλιξη της φιλοσοφίας και αντίστοιχα το θεωρητικό κομμάτι της φιλοσοφίας αποτελεί πηγή έμπνευσης νεοφώτιστων μαθηματικών. Εχοντας κοινή λογική, εφαρμόζοντας τους ίδιους νοηματικούς κανόνες, οι δύο επιστήμες συμπλέουν αρμονικά.

Αλλωστε, κάθε μαθηματική ανακάλυψη αποτελεί αντικείμενο φιλοσοφικών αναζητήσεων. Κάθε μαθηματικό μοντέλο χρειάζεται τη συμβολή της φιλοσοφίας ώστε να αναδειχθεί και να μετατραπεί σε πρακτική εφαρμογή μέσα στη κοινωνία. Με την ίδια λογική, κάθε φιλοσοφική ρήση αποτελεί πηγή ιδεών για τους θετικούς επιστήμονες, δίνοντας τους την ευκαιρία να ανακαλύψουν νέες πτυχές του αντικειμένου τους,

Λαμβάνοντας υπόψιν τα σημαντικά κοινά χαρακτηριστικά δύο τόσο… διαφορετικών επιστημών, είναι απορίας άξιο πως μαθηματικά και φιλοσοφία έχουν καταλήξει να είναι δυο εκ διαμέτρου αντίθετα γνωστικά αντικείμενα. Με βάση την… ερωτική σχέση που διατηρούν εδώ και τόσους αιώνες, θα έπρεπε κάθε φιλόσοφος και κάθε μαθηματικός να «αγαπούν» εξίσου και τις δύο επιστήμες. Ισως αυτό αποτελέσει μια λύση στη μονοδιάστατη λογική που τείνει να αφομοιώσει η σημερινή κοινωνία.

_______________________

   Πηγή: iefimerida.gr

by Αντικλείδι , http://antikleidi.com

Κατηγορίες:
Νέα

Ο χρυσός αριθμός φι

| 0 ΣΧΟΛΙΑ

Phi

Τι κοινό έχουν μια πιστωτική κάρτα, η αναπαραγωγή των κουνελιών, το κουνουπίδι και ο Παρθενώνας; Η απάντηση ακούει στο όνομα 1,618033..., το χρυσό αριθμό. Μάθετε τι τον καθιστά τόσο μαγικό!

Τι το ιδιαίτερο έχει, λοιπόν, αυτός ο αριθμός; Σε τι διαφέρει από τους άλλους; Όπως ο π (3,141592...) εκφράζει το πιο τέλειο γεωμετρικό σχήμα, τη σφαίρα, έτσι και ο φ (1,618033...) είναι ο αριθμός της ομορφιάς. Ο μοναχός του 15ου αιώνα Λούκα Πατσιόλι, επηρεασμένος από την αντίληψη της εποχής ότι οι νέες γνώσεις της επιστήμης έπρεπε να ενταχθούν στο εκκλησιαστικό δόγμα, τον ονόμασε Η θεία αναλογία. Πού αναφέρεται αυτή η φράση, που θα ταίριαζε μάλλον σε αλχημιστή ή αποκρυφιστή παρά σε μαθηματικό; Στο «χρυσό αριθμό», ονομασία που αποδίδεται στον Λεονάρντο Ντα Βίντσι. Αιώνες αργότερα, ο Αμερικανός μαθηματικός Μαρκ Μπαρ θα τον προσδιόριζε με το ελληνικό γράμμα φι, προς τιμήν του γλύπτη Φειδία, ο οποίος με βάση αυτόν τον αριθμό δημιουργούσε τα έργα του.

Μαθηματική ομορφιά

Ο φ ανήκει στους άρρητους αριθμούς, δηλαδή εκείνους που δεν μπορούμε να εκφράσουμε ως κλάσμα δύο ακέραιων. Για παράδειγμα, η τετραγωνική ρίζα του δύο είναι άρρητος αριθμός: αυτή η ανακάλυψη προκάλεσε τέτοια αμηχανία στους πυθαγόρειους, που την απέκρυψαν από τον υπόλοιπο κόσμο. Σήμερα, για να υπολογίσουμε το χρυσό αριθμό, αρκεί να χρησιμοποιήσουμε ένα κομπιουτεράκι και να ακολουθήσουμε τις εξής απλές οδηγίες: πρώτα υπολογίζουμε την τετραγωνική ρίζα του 5. Μετά προσθέτουμε 1 στο αποτέλεσμα και τέλος το διαιρούμε διά 2.

Σε μαθηματικούς όρους, χρυσός αριθμός είναι εκείνος που αν του προσθέσουμε το 1 θα μας δώσει το ίδιο αποτέλεσμα το οποίο θα έχουμε και αν τον υψώσουμε στο τετράγωνο. Δηλαδή, αν ο χρυσός αριθμός ήταν το 4, θα έπρεπε να είχαμε το ίδιο αποτέλεσμα είτε κάναμε τον πολλαπλασιασμό 4 επί 4 είτε κάναμε την πρόσθεση 4 συν 1, που όμως δεν ισχύει. Στην πραγματικότητα, πάντως, υπάρχουν δύο χρυσοί αριθμοί, ένας θετικός (1,618033...) και ένας αρνητικός (-1,618033...), αλλά ο πρώτος έχει κλέψει όλη τη δόξα.

Πανταχού παρών

Όμως, το μυστήριο με αυτόν τον παράξενο αριθμό είναι ότι το συναντάμε στην ανάπτυξη των φυτών, την κατανομή των φύλλων σε ένα μίσχο και τα όστρακα. Κρύβεται επίσης στις πιστωτικές κάρτες, στις αναλογίες του Παρθενώνα και στο διαχρονικό πρότυπο του αρμονικού ανθρώπινου σώματος, στον Άνθρωπο του Βιτρούβιου, έργο του Λεονάρντο Ντα Βίντσι.

Ακολουθώντας τα βήματα του αρχιτέκτονα της Αναγέννησης Λεόν Μπατίστα Αλμπέρτι και του γλύπτη Αντόνιο Φιλαρέτε, ο Λεονάρντο πίστευε ότι υπάρχει στενή σχέση ανάμεσα στην ανατομία και την αρχιτεκτονική. Τη δεκαετία του 1480, όταν προσέφερε τις υπηρεσίες του στον δούκα του Μιλάνου, εμβάθυνε στη σχέση των δύο επιστημών και δημιούργησε το διάσημο σχέδιο το 1487. Το σχέδιο αυτό βασίστηκε στην πραγματεία που είχε γράψει για το ανθρώπινο σώμα ο Ρωμαίος αρχιτέκτονας Μάρκος Πολλίωνας Βιτρούβιος.

Η χρυσή τελειότητα

Vitruvian_man_mixed

mona-lisa-golden ratio

Στην περιγραφή του, ο Πολλίωνας αναφέρει: «Στο ανθρώπινο σώμα, το κέντρο είναι ο ομφαλός. Επομένως, αν ένας άντρας ξαπλώσει με το πρόσωπο προς τα πάνω, τα χέρια και τα πόδια του αναπτυγμένα, και σχεδιάσουμε έναν κύκλο με κέντρο τον ομφαλό, τα δάχτυλα των χεριών και των ποδιών θα αγγίξουν την περιφέρεια του κύκλου. Μπορούμε επίσης να περικλείσουμε το σώμα με ένα ορθογώνιο σχήμα». Αν διαιρέσουμε τη μια πλευρά του ορθογωνίου (το ύψος του ανθρώπου) με την ακτίνα του κύκλου (την απόσταση από τον ομφαλό μέχρι την άκρη των δαχτύλων), θα έχουμε το χρυσό αριθμό. Έτσι, για να ανακαλύψει κάποιος κατά πόσο ανταποκρίνεται στο πρότυπο της αισθητικής τελειότητας, δεν έχει παρά να πάρει μια μεζούρα.

Σιγά σιγά ο Λεονάρντο παθιάστηκε με την αναζήτηση μοτίβων που συνέδεαν την ανατομία με την αρχιτεκτονική, με την αρμονία της μουσικής, ακόμη και με την ίδια τη φύση. Η προσπάθειά του να βρει αναλογίες και να συσχετίσει την περιφέρεια των κορμών των δέντρων με το ύψος των κλαδιών τους ήταν επίπονη αλλά μάταια. Ωστόσο, δεν επρόκειτο απλώς για μια εμμονή, καθώς, όταν παρατηρούμε τη φύση, μπορούμε να εντοπίσουμε το χρυσό αριθμό σε πολλά διαφορετικά παραδείγματα. Αλλά προτού ασχοληθούμε με αυτό το ζήτημα θα ταξιδέψουμε ακόμη πιο πίσω στο παρελθόν, και πιο συγκεκριμένα στο 13ο αιώνα, όταν ένας μαθηματικός είχε μια περίεργη εμμονή με τα κουνέλια και τη διαδικασία αναπαραγωγής τους.

Αχ, κουνελάκι

Το 1202 ο Λεονάρντο Φιμπονάτσι προσπάθησε να υπολογίσει την ταχύτητα αναπαραγωγής των κουνελιών στη Γη σε ιδανικές συνθήκες. Ας υποθέσουμε, έλεγε, ότι έχουμε ένα μοναδικό ζευγάρι, το οποίο αρχίζει να αναπαράγεται από τον πρώτο κιόλας μήνα και μετά από κάθε μήνα κύησης γεννά ένα ακόμη ζεύγος. Και ότι κάθε νέο ζεύγος γίνεται γόνιμο σε δύο μήνες μετά τη γέννησή του και αρχίζει να αναπαράγεται με τον ίδιο ρυθμό. Πόσα ζευγάρια κουνελιών θα έχουμε στο τέλος του πρώτου χρόνου; Στο τέλος του πρώτου μήνα το αρχικό ζευγάρι είναι έτοιμο να τεκνοποιήσει, αλλά υπάρχει μόνο αυτό. Στο τέλος του δεύτερου μήνα έχουμε το αρχικό ζευγάρι και το πρώτο ζευγάρι παιδιών του. Στο τέλος του τρίτου μήνα έχουμε το αρχικό ζευγάρι, το πρώτο ζευγάρι παιδιών του, που είναι έτοιμα κι αυτά να τεκνοποιήσουν, και ένα δεύτερο ζεύγος παιδιών του. Στο τέλος του τέταρτου μήνα έχουμε το αρχικό ζευγάρι και το τρίτο ζεύγος παιδιών του, το πρώτο ζεύγος παιδιών και το πρώτο δικό τους ζεύγος παιδιών, καθώς και το δεύτερο ζεύγος παιδιών, που είναι έτοιμο να τεκνοποιήσει. Πιο συγκεκριμένα, η ακολουθία των ζευγαριών κουνελιών είναι: 1, 1, 2, 3, 5. Μπορείτε να εντοπίσετε το μοτίβο που κρύβεται πίσω από αυτή την αλληλουχία; Αν την επεκτείνουμε λίγο ακόμα, τα πράγματα αρχίζουν να ξεκαθαρίζουν: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233... Δηλαδή, για να δημιουργήσουμε τη λεγόμενη ακολουθία Φιμπονάτσι (γνωστή και ως «αριθμοί Φιμπονάτσι»), αρκεί να προσθέσουμε τα δύο προηγούμενα νούμερα για να έχουμε το αμέσως επόμενο.

Όμως, τι σχέση έχει αυτή η ακολουθία με το χρυσό αριθμό; Κάντε το παρακάτω πείραμα: πάρτε ένα κομπιουτεράκι και διαιρέστε οποιοδήποτε νούμερο με το αμέσως προηγούμενό του. Όσο προχωράτε στην ακολουθία, το πηλίκο θα προσεγγίζει ολοένα και περισσότερο το χρυσό αριθμό. Σε μαθηματικούς όρους, αυτό σημαίνει ότι η ακολουθία που δημιουργείται από τη διαίρεση κάθε αριθμού Φιμπονάτσι με τον αμέσως προηγούμενό του έχει ως όριο το χρυσό αριθμό.

Παρθενογένεση στο μελίσσι

Το πρόβλημα με τα κουνέλια του Φιμπονάτσι είναι ότι αποτελούν μια εξιδανικευμένη υπόθεση. Υπάρχει λοιπόν στη φύση κάποιο υπαρκτό παράδειγμα όπου συναντάμε αυτή τη χρυσή ακολουθία; Υπάρχει, στο γενεαλογικό δέντρο κάθε κηφήνα σε ένα μελίσσι. Το εν λόγω έντομο γεννιέται από ένα μη γονιμοποιημένο αβγό της βασίλισσας, δηλαδή έχει μητέρα αλλά όχι και πατέρα. Αντιθέτως, τόσο η βασίλισσα (η μοναδική που μπορεί να κάνει αβγά) όσο και οι εργάτριες γεννιούνται από αβγά που έχουν γονιμοποιηθεί από αρσενικό. Αυτές, λοιπόν, έχουν και πατέρα και μητέρα. Επομένως, το γενεαλογικό δέντρο του κηφήνα διαμορφώνεται ως εξής: έχει 1 μητέρα, 2 παππούδες (αρσενικό και θηλυκό), 3 προπαππούδες (δύο από την οικογένεια της γιαγιάς και μία του παππού), 5 προ-προπαππούδες, 8 προ-προ-προπαππούδες και ούτω καθεξής. Το γενεαλογικό δέντρο του κηφήνα είναι μια ακολουθία Φιμπονάτσι! Και όχι μόνο αυτό. Το 1966, ο Νταγκ Γιανέγκα, από το Μουσείο Έρευνας στην Εντομολογία του Πανεπιστημίου της Καλιφόρνιας, ανακάλυψε ότι η αναλογία που υφίσταται ανάμεσα σε εργάτριες μέλισσες και κηφήνες σε ένα μελίσσι προσεγγίζει το χρυσό αριθμό.

nautilus-vs-golden-spiralΗ διάσημη σπείρα

Ας μετατρέψουμε τώρα τους αριθμούς σε τετράγωνα. Τοποθετούμε δύο ίσα τετράγωνα οποιουδήποτε μεγέθους το ένα δίπλα στο άλλο, έτσι ώστε οι πλευρές τους να εφάπτονται. Στην κορυφή τους σχεδιάζουμε ένα ακόμη, με διπλάσια πλευρά. Στα δεξιά προσθέτουμε ένα ακόμη, με τριπλάσια πλευρά. Από κάτω ζωγραφίζουμε κι άλλο, με πενταπλάσια πλευρά. Συνεχίζουμε έτσι ώστε η πλευρά κάθε νέου τετραγώνου να αποτελεί το άθροισμα των δύο προηγούμενων. Στη συνέχεια, αν σχεδιάσουμε σε κάθε τετράγωνο το ένα τέταρτο μιας καμπύλης γραμμής (ξεκινώντας από το πρώτο), όπως στο σχέδιο της δεύτερης σελίδας του θέματος, θα έχουμε μια λογαριθμική σπείρα, πανομοιότυπη με το σχήμα ενός οστρακοειδούς, του ναυτίλου.

Τώρα πάρτε ένα μολύβι και χαράξτε μια γραμμή από το κέντρο της σπείρας προς τα έξω. Τονίστε δύο σημεία όπου αυτή η γραμμή τέμνει τη σπείρα, με την προϋπόθεση ανάμεσά τους η σπείρα να εκτελεί μία ολοκληρωμένη περιστροφή. Θα διαπιστώσετε ότι το εξωτερικό σημείο είναι 1,618 φορές πιο μακριά από το κέντρο από το εσωτερικό. Δηλαδή, ο χρυσός αριθμός είναι ο παράγοντας ανάπτυξης του ναυτίλου.

fibonaciΠού αλλού συναντάμε τους αριθμούς Φιμπονάτσι; Στον αριθμό της σπείρας που μπορούμε να μετρήσουμε αριστερά και δεξιά στους σπόρους των ηλίανθων, στον αριθμό των πετάλων των λουλουδιών (3 στο αγριόκρινο, 5 ή 8 σε κάποια φυτά του γένους ranunculus, ενώ οι μαργαρίτες και οι ηλίανθοι συνήθως έχουν 13, 21, 34, 55 ή 85 πέταλα...) και στον αριθμό των ανθών στα σπιράλ του κουνουπιδιού και του μπρόκολου. Με τον ίδιο τρόπο, μπορούμε να εντοπίσουμε τους αριθμούς Φιμπονάτσι στον πλάτανο και τη μηλιά.

Το καλύτερο σύστημα οργάνωσης

Για ποιο λόγο η φύση δείχνει ιδιαίτερη αδυναμία στην ακολουθία Φιμπονάτσι; Τα φύλλα, τα πέταλα και οι σπόροι οργανώνονται στα φυτά ακολουθώντας ένα συγκεκριμένο μοτίβο γιατί έτσι, καθώς αναπτύσσονται, αξιοποιούν με τον καλύτερο δυνατό τρόπο το διαθέσιμο χώρο. Αν κατανείμουμε τα φύλλα στο μίσχο σύμφωνα με το χρυσό αριθμό, όλα θα επωφελούνται στο μέγιστο βαθμό από το φως του ήλιου, χωρίς να κρύβει το ένα το άλλο. Τα λουλούδια, χάρη στο χρυσό αριθμό, προσελκύουν όσο το δυνατόν καλύτερα τα έντομα που μεταφέρουν τη γύρη. Η ακολουθία Φιμπονάτσι είναι η πιο επιτυχημένη προσέγγιση του αριθμού φ.

Parthenon-Phi-Golden-Ratio-4Μετά από όλα αυτά, δε μας κάνει εντύπωση το γεγονός ότι ο Παρθενώνας είναι κατασκευασμένος σύμφωνα με το χρυσό αριθμό. Το ίδιο συμβαίνει και με τις διαστάσεις των πιστωτικών καρτών. Εξάλλου, υπάρχει τίποτα ωραιότερο στη φύση από μια Visa χωρίς πιστωτικό όριο;

Πηγή: Περιοδικό Focus , εικόνες διαδίκτυο , για να μάθετε πιο πολλά: goldennumber

Κατηγορίες:
Νέα

Γιατί κάποιοι είναι καλοί στα μαθηματικά και κάποιοι άλλοι στη γλώσσα

| 0 ΣΧΟΛΙΑ

mathimatika-1

Γάλλοι νευροεπιστήμονες ανακάλυψαν στον εγκέφαλο των επαγγελματιών μαθηματικών τα διακριτά νευρωνικά «αποτυπώματα» της προχωρημένης μαθηματικής σκέψης.

Τα εγκεφαλικά αυτά «κυκλώματα», που ενεργοποιούνται από τις δύσκολες μαθηματικές έννοιες, αποτελούν σε μεγάλο βαθμό το ίδιο νευρωνικό δίκτυο που «χαρίζει» στους ανθρώπους την κατανόηση των απλών αριθμών. Απλώς στην περίπτωση των «υψηλών» μαθηματικών, η δραστηριοποίηση αυτού του δικτύου είναι πιο έντονη. Όμως είναι τελείως διακριτό από το αντίστοιχο νευρωνικό δίκτυο για τη γλώσσα που υπάρχει στο αριστερό ημισφαίριο του ανθρώπινου εγκεφάλου.

Οι ερευνητές, με επικεφαλής τον κορυφαίο Γάλλο νευροεπιστήμονα Στανισλάς Ντεάν του Κολεγίου της Γαλλίας και της Μονάδας Γνωσιακής Νευροαπεικόνισης, που έκαναν τη σχετική δημοσίευση στο περιοδικό της Εθνικής Ακαδημίας Επιστημών των ΗΠΑ (PNAS), μελέτησαν με την τεχνική της λειτουργικής μαγνητικής απεικόνισης (fMRI) τους εγκεφάλους 15 υψηλού επιπέδου μαθηματικών και -για λόγους σύγκρισης- 15 μη μαθηματικών, που ήσαν επίσης υψηλού ακαδημαϊκού επιπέδου. Και οι δύο ομάδες συμμετεχόντων κλήθηκαν να χαρακτηρίσουν ως αληθείς, ψευδείς ή άνευ νοήματος μια σειρά από μαθηματικές και μη μαθηματικές έννοιες και δηλώσεις.

Διαπιστώθηκε ότι έννοιες που προέρχονταν από τα μαθηματικά (ανάλυση, άλγεβρα, γεωμετρία, τοπολογία), ενεργοποιούσαν συγκεκριμένες εγκεφαλικές περιοχές στους μαθηματικούς, αλλά όχι στους μη μαθηματικούς. Οι περιοχές αυτές είναι διαφορετικές από εκείνες που σχετίζονται με την επεξεργασία της γλώσσας και την κατανόηση του νοήματος του λόγου και οι οποίες ενεργοποιούνται σε όλους τους ανθρώπους, μαθηματικούς και μη.

Από την άλλη, οι περιοχές του εγκεφάλου που ενεργοποιούνται από τις προχωρημένες μαθηματικές έννοιες, «πυροδοτούνται» επίσης, αν και σε μικρότερο βαθμό, όταν οι άνθρωποι -μαθηματικοί και μη- κάνουν απλούς υπολογισμούς με αριθμούς.

Ο ανθρώπινος εγκέφαλος είναι μοναδικός στο ζωικό βασίλειο – από όσο γνωρίζουμε τουλάχιστον- στην κατανόηση των μαθηματικών εννοιών. Το πώς και γιατί εξελίχθηκε αυτή η ικανότητα στους προγόνους μας τους πιθήκους, παραμένει ακόμη ένα επιστημονικό μυστήριο.

Δύο είναι οι βασικές θεωρίες που έχουν προταθεί. Είτε ότι η μαθηματική ικανότητα αναπτύχθηκε παράλληλα και ως παρακλάδι της γλωσσικής ικανότητας (κάτι που υποστηρίζει και ο Νόαμ Τσόμσκι), είτε ότι η μαθηματική ικανότητα είναι ουσιαστικά άσχετη με τη γλώσσα (κάτι που π.χ. πίστευε ο Αϊνστάιν). Η νέα νευροεπιστημονική έρευνα έρχεται να ενισχύσει τη δεύτερη άποψη και μάλλον θα ικανοποιήσει τους περισσότερους μαθηματικούς.

Σύμφωνα με τους γνωσιακούς νευροεπιστήμονες, θεωρείται πιθανό ότι τα μαθηματικά αναδύθηκαν στον ανθρώπινο εγκέφαλο μέσα από τις αρχαίες και μη γλωσσικές διαισθήσεις που είχαν οι πρόγονοί μας σχετικά με το χώρο, το χρόνο και τον αριθμό. Ακόμη και τα νήπια φαίνεται να έχουν τέτοιες αφηρημένες πρωτο-μαθηματικές διαισθήσεις, οι οποίες αποτελούν το θεμέλιο για την πιο προχωρημένη μαθηματική σκέψη.

__________________

  Πηγή: medicalland.gr

by Αντικλείδι , http://antikleidi.com

Κατηγορίες:
Νέα

Η ομορφιά των μαθηματικών

| 0 ΣΧΟΛΙΑ

Εκτός από την προφανή "ακαδημαϊκή" τους χρησιμότητα, οι μαθηματικές εξισώσεις μας ακολουθούν σχεδόν σε όλες τις εκφάνσεις τις καθημερινής μας ζωής και πολλές φορές μπορούν να θεωρηθούν έργα τέχνης. Μια καλή απόδειξη αποτελεί το παρακάτω video των Yann Pineill και Nicolas Lefaucheux.

 "Τα μαθηματικά διαθέτουν όχι μόνον αλήθεια, αλλά και ανώτερη ομορφιά, τόση όση μόνον η πιο μεγαλειώδης τέχνη μπορεί να επιδείξει.",  Μπέρτραντ Ράσελ, μαθηματικός και φιλόσοφος.

 "Τα μαθηματικά είναι, κατά κάποιο τρόπο, η ποίηση των λογικών ιδεών.", Αϊνστάιν.

by Αντικλείδι , http://antikleidi.com

Κατηγορίες:
Νέα

Μαθηματικά κατεύθυνσης ή κατευθυνόμενα μαθηματικά;

| 0 ΣΧΟΛΙΑ

Η πιο δύσκολη μέρα για τους εξεταζόμενους των πανελληνίων ολοκληρώθηκε. Ο βραχνάς των μαθηματικών έλαβε τέλος, αφήνοντας πλέον τους μαθητές να... αναπνεύσουν ελεύθερα, να σκεφτούν πως σε λίγες μέρες θα έχουν όλα τελειώσει. Τι είναι όμως αυτό που γεννά τόσο φόβο στους μαθητές; Γιατί να είναι τα μαθηματικά το κύριο άγχος τους σε κάθε εξέταση;

Σαν φοιτητής του Μαθηματικού, προσπαθώ να δώσω μια... απόδειξη αυτού του φαινομένου. Από το σύνολο των μαθημάτων θετικής και τεχνολογικής κατεύθυνσης, τα μαθηματικά είναι τα μόνα που δεν μπορούν να μπουν σε... καλούπι. Ολα τα υπόλοιπα, ακόμα και η φυσική, αντιμετωπίζονται με συγκεκριμένη μεθοδολογία. Τεχνάσματα, ασκήσεις SOS, αποστήθιση της θεωρίας κλπ. Παραδόξως αυτή η μεθοδολογία, εδώ και πολλά χρόνια, εφαρμόζεται και στα μαθηματικά. Μια παιδαγωγική μέθοδος που εστιάζει στην ολοκληρωτική τυποποίηση του μαθήματος.

Η απόδειξη κάθε θεωρήματος γράφεται στα τετράδια, μέχρι το χέρι να μάθει να την ολοκληρώνει... μηχανικά. Η θεωρία στα μαθηματικά είναι το πιο «εύκολο» κομμάτι (!), μαθαίνουμε στην 3η Λυκείου. Ακριβώς επειδή το Α΄Θέμα δεν αποτελεί εξέταση της θεωρίας, αλλά εξέταση της καλής αποστήθισης της. Περνώντας στα υπόλοιπα τρία θέματα, για κάθε τύπο ασκήσεων υπάρχει αντίστοιχη «φόρμουλα» λύσης. Πρώτα βλέπουμε τα δεδομένα, αναγνωρίζουμε το είδος της άσκησης και λύνουμε ακολουθώντας αυστηρά τα «βήματα» που θυμόμαστε καλά από το φροντιστήριο. «Αν γνωρίζετε καλά τις μεθοδολογίες, τότε μπορείτε να λύσετε κάθε άσκηση» ακούγαμε επανειλημμένως από τους μαθηματικούς.

Επί ένα χρόνο, «χτίζονται» μαθητές έτοιμοι να λειτουργήσουν σαν κομπιουτεράκια στην τελική τους εξέταση. Οι εκπαιδευτικοί, επίσης χαμένοι στον κόσμο των πανελληνίων, δεν νοιάζονται να τους δείξουν τι πραγματικά συμβαίνει στον κόσμο των μαθηματικών, προτιμώντας να τους μάθουν να λύνουν, έστω και χωρίς να καταλαβαίνουν. Οι εξεταζόμενοι μπαίνουν στις αίθουσες χωρίς την παραμικρή μαθηματική διαίσθηση. Με ακατέργαστη μαθηματική σκέψη. Χωρίς να γνωρίζουν καν τον λόγο που χρησιμοποιούν την παράγωγο, το ολοκλήρωμα, πόσω μάλλον τους μιγαδικούς αριθμούς.

mathites-touvla

Οι εξεταστές από την μεριά τους φροντίζουν να συντηρούν με τον καλύτερο τρόπο αυτό το σύστημα εξέτασης. Τα θέματα που θα «πέσουν» είναι σχεδόν γνωστά. Θεωρία στο πρώτο θέμα, μιγαδικοί στο δεύτερο, παράγωγοι, ολοκληρώματα και υπαρξιακά θεωρήματα στα άλλα δύο. Εχουν βρει όμως έναν άλλο τρόπο να δυσκολεύουν το διαγώνισμα. Το εμπλουτίζουν με έναν τεράστιο αριθμό υποερωτημάτων, μετατρέποντας το σε... αγώνα δρόμου. Δοκιμάζουν την «ετοιμότητα» και την ταχύτητα των υποψηφίων, αντί να τεστάρουν τις πραγματικές μαθηματικές τους γνώσεις. Δεν ψάχνουν για καλά διαβασμένους, αλλά για «σωστά» προετοιμασμένους.

Τα μαθηματικά όμως δεν είναι δυνατόν να ισοπεδωθούν με τέτοιο τρόπο. Κάθε χρόνο ένας τεράστιος αριθμός εξεταζομένων αποτυγχάνει, επειδή δεν μπορεί να εφαρμόσει την «ευλογημένη» μεθοδολογία των φροντιστηρίων. Σε κάθε άσκηση η «φόρμουλα» εφαρμόζεται διαφορετικά και αν ένας μαθητής δεν έχει μαθηματική αντίληψη, δυσκολεύεται να βρει τον τρόπο. Οταν η άσκηση δεν λύνεται μέσω της... πεπατημένης, τότε ο μαθηματικά απαίδευτος ξεμένει από λύσεις. Χάνεται μέσα στις ιδέες του, αφού δεν έχει μάθει να αντιλαμβάνεται το πρόβλημα, παρά μόνο να το λύνει. Ο περιορισμένος χρόνος που του δίνεται, δεν του αφήνει περιθώρια να χρονοτριβεί. Εχει να λύσει πολλά για να «επιβιώσει» σε αυτόν τον ακραίο ανταγωνισμό των πανελληνίων. Το άγχος έρχεται σαν φυσιολογική αντίδραση, καταβάλλοντας το μυαλό του και επισκιάζοντας την όποια λογική σκέψη.

Ακόμα και όσοι έχουν την απαραίτητη μαθηματική αντίληψη όμως, την παραμερίζουν προτιμώντας να μην... ρισκάρουν. Η μαθηματική τους σκέψη μέσα στην χρονιά «ξεφουσκώνει», ίσως και υποσυνείδητα, δίνοντας την θέση της στα... «άγια» βήματα επίλυσης. Οι «φόρμουλες» δίνουν σίγουρα μια μεγαλύτερη αίσθηση σιγουριάς στους μαθητές. Μια αίσθηση που όμως είναι εντελώς πλασματική.

mathimatikaΚάθε χρόνο λοιπόν επικρατεί ο ίδιος φόβος στο μυαλό των υποψηφίων. Μήπως και εμφανιστεί μια άσκηση που να μην λύνεται με γνωστό τρόπο. Μήπως χρειαστεί η «μαγική» μεθοδολογία των φροντιστηρίων να προσαρμοστεί μέσα στα δεδομένα της. Μήπως υπάρξει η ανάγκη για περισσότερη μαθηματική σκέψη από όση διαθέτουν, αφού ποτέ δεν την ανέπτυξαν. Μήπως φέτος η εξέταση γίνει περισσότερο «μαθηματικό» διαγώνισμα και λιγότερο... αγώνας δρόμου.

Υγ. Εχω φτάσει στο 3ο έτος φοίτησης στο Μαθηματικό και ακόμα προσπαθώ να αντιληφθώ την πραγματική χρήση των μιγαδικών αριθμών. Το μάθημα της Μιγαδικής Ανάλυσης, ένα από τα δυσκολότερα του τμήματος, διδάσκεται στο 4ο έτος, αφού οι φοιτητές έχουν λάβει όλη την απαραίτητη προαπαιτούμενη γνώση. Είναι απορίας άξιο γιατί οι μιγαδικοί αριθμοί διδάσκονται και εξετάζονται στο σχολείο, ενώ ακόμα οι μαθητές δεν έχουν καν διαίσθηση των πραγματικών αριθμών. Αλλωστε το 95% των εξεταζόμενων δεν θα τους ξανασυναντήσει ποτέ.

__________

  Πηγή: iefimerida.gr

by Αντικλείδι , http://antikleidi.com

Κατηγορίες:
Νέα

Τα μαθηματικά στη φύση

| 0 ΣΧΟΛΙΑ

Διαβάστε ένα εκπληκτικό άρθρο και ενημερωθείτε γιατί οι μέλισσες ξέρουν μαθηματικά καθώς και τα τζιτζίκια!

1.  Η ΣΥΜΜΕΤΡΙΑ ΣΤΟΝ ΦΥΣΙΚΟ ΚΟΣΜΟ

Η συμμετρία που κατεξοχήν εκράζει την καλαισθησία και την ομορφιά είναι διάσπαρτη στον φυσικό κόσμο. Μερικές εικόνες μας πείθουν Η φύση λοιπόν γεωμετρεί!

Η συμμετρία στη φύση 

Η συμμετρία στη βιολογία είναι η ισόρροπη κατανομή των διπλών μερών του σώματος ή  του σχήματος ενός ζωντανού οργανισμού.  Το σώμα ή το  σχέδιο των περισσότερων πολυκύτταρων οργανισμών παρουσιάζουν κάποια μορφή συμμετρίας , είτε ακτινική συμμετρία ή διμερής συμμετρίας ή «σφαιρική συμμετρία».  Μια μικρή μειοψηφία δεν παρουσιάζουν συμμετρία (είναι ασύμμετρη).

Στη φύση και τη βιολογία , η συμμετρία είναι κατά προσέγγιση. Για παράδειγμα, τα φύλλα των φυτών, ενώ θεωρούνται συμμετρικά, σπάνια θα ταιριάζουν ακριβώς όταν διπλώνονται στη μέση.         

Η αμφίπλευρη συμμετρία της πεταλούδας.

Οι θαλάσσιες ανεμώνες  και οι μέδουσες : απεικόνιση με ακτινωτή συμμετρία.

Διμερή συμμετρία

Ένα μήλο κομμένο με συμμετρία.

petalouda3symmetry3

2.  Η ΜΕΛΛΙΣΣΑ ΓΝΩΡΙΖΕΙ ΑΝΩΤΕΡΑ ΜΑΘΗΜΑΤΙΚΑ!

Γιατί όμως η μέλισσα επιλέγει το κανονικό εξάγωνο και όχι το ισόπλευρο τρίγωνο ή το τετράγωνο για την κατασκευή των κελιών της κερήθρας; Ιδού το ερώτημα!

  1. Αφενός μεν «κλείνει» επακριβώς το επίπεδο χωρίς κενά, αλλά είναι και το μοναδικό σχήμα με την μικρότερη περίμετρο. Δηλαδή η μέλισσα δαπανά λιγότερο κερί για την κατασκευή των κελιών της.
  2. Επιπλέον αποτελεί την καλύτερη διαμέριση για την αποθήκευση μέγιστου όγκου μελιού.Αποδεικνύεται με ανώτερα μαθηματικά ( λογισμό μεταβολών ) ότι αν θέλουμε να διαμερίσουμε ( να χωρίσουμε σε μικρότερα τμήματα ) ένα δοχείο ώστε να περιέχεται όσο το δυνατό μέγιστος όγκος στα κελιά της διαμέρισης αυτό επιτυγχάνετε με την επιλογή κανονικών εξαγώνων. Η μέλισσα  δηλαδή γνωρίζει και ανώτερα μαθηματικά!

Ποιος έβαλε τις συγκεκριμένες γεωμετρικές πληροφορίες στα απειροελάχιστα εγκεφαλικά κύτταρα αυτού του ζουζουνιού;

Και όπως λέει το διαφημιστικό σλόγκαν «Τυχαίο»;

Από όλα τα κανονικά επίπεδα σχήματα, εκείνα που η μέλισσα θα μπορούσε να χρησιμοποιήσει για την κατασκευή των κελιών της, είναι τρία. Το ισόπλευρο τρίγωνο, το τετράγωνο και το κανονικό εξάγωνο. Μόνον αυτά τα τρία γεωμετρικά σχήματα «κλείνουν» ακριβώς το επίπεδο χωρίς να αφήνουν κενά μεταξύ τους. Π.χ. τα πεντάγωνα , τα επτάγωνα, οκτάγωνα κλ.π δεν «κουμπώνουν» επακριβώς μεταξύ των. Αφήνουν ενδιάμεσο κενό χώρο. (π.χ. Πενταγωνική και οκταγωνική διάταξη)

Γιατί όμως η μέλισσα επιλέγει το κανονικό εξάγωνο και όχι το ισόπλευρο τρίγωνο ή το τετράγωνο; Ιδού το ερώτημα! Γνωρίζουμε ότι η μέλισσα σε κάθε κελλί εναποθέτει την αυτή ποσότητα μελιού. Ας υποθέσουμε ότι το απαιτούμενο εμβαδόν για κάθε κελί είναι 1 τετραγωνική μονάδα. Αν κατασκεύαζε π.χ. τετραγωνικές κυψελίδες τότε αυτές θα είχαν πλευρά 1 μονάδα μήκους, οπότε 1 Χ 1=1 τετραγωνική μονάδα. Αν θα κατασκεύαζε ισόπλευρες τριγωνικές κυψελίδες, τι μήκος θα έπρεπε να έχει η κάθε πλευρά του ισοπλεύρου τριγώνου ώστε το εμβαδόν του να είναι ισοδύναμο με 1 τετραγωνική μονάδα;

Από τον τύπο υπολογισμού του εμβαδού (*) οποιουδήποτε κανονικού πολυγώνου επιλύουμε ως προς a και για εμβαδόν = 1 τετρ. μονάδα, βρίσκουμε ότι το τρίγωνο θα έπρεπε να έχει μήκος πλευράς ίσο με = 1,52 μονάδες μήκους.

Αν κατά τον ίδιο τρόπο υπολογίσουμε το μήκος της πλευράς του ισοδύναμου κανονικού εξαγώνου, βρίσκουμε ότι το μήκος της πλευρά του ισούται με 0,62 μονάδες μήκους.

Επομένως :
- στην περίπτωση της τριγωνικής κατασκευής η περίμετρος του τριγώνου ισούται με 3 Χ 1,52 = 4,56 μονάδες μήκους.

- στην περίπτωση κατά την οποία η μέλισσα θα κατασκεύαζε ορθογωνικά κελιά το καθένα θα είχε περίμετρο 4 Χ 1 = 4 μονάδες μήκους.

- στην περίπτωση της εξαγωνικής κατασκευής η περίμετρος του κάθε κελιού ισούται με 0,62 Χ 6 = 3,72 μονάδες μήκους.

Συμπέρασμα:

Παρατηρούμε ότι η επιλογή του εξαγωνικού σχήματος δεν είναι τυχαία. Αφενός μεν «κλείνει» επακριβώς το επίπεδο χωρίς κενά, αλλά είναι και το μοναδικό σχήμα με την μικρότερη περίμετρο. Δηλαδή η μέλισσα δαπανά λιγότερο κερί για την κατασκευή των κελιών της.

Και συνεχίζω με κάτι πιο εντυπωσιακό. Η πλευρά του εξαγώνου (=0,62) σε σχέση με την πλευρά του ισοδυνάμου τετραγώνου (=1) έχουν σχέση χρυσής τομής. Πράγματι ο λόγος 1 / 0,62 = 1,62 όπου 1,62 = φ. Ο νόμος της τέλειας αρμονίας σε όλο του το μεγαλείο. Η πλευρές δηλαδή του των ισοδυνάμων τετραγώνου και εξαγώνου σχηματίζουν το χρυσό ορθογώνιο στο οποίο ο λόγος των πλευρών ισούται με 1,62 ήτοι =φ. Για τον αριθμό φ βεβαίως θα μπορούσαμε να αναπτύξουμε ολόκληρη πραγματεία αλλά δεν είναι επί του παρόντος. Αρκεί να αναφέρουμε ότι όλες οι αρμονικές σχέσεις στην φύση καθορίζονται από αυτόν το ιεροκρύφιο αριθμό. Οι αρχαίοι Έλληνες ήταν οι πρώτοι που τον είχαν προσδιορίσει μαθηματικώς και τον εφάρμοζαν σε κάθε καλλιτεχνική τους δημιουργία, γλυπτική αρχιτεκτονική, μουσική. (συμβολίζεται με το γράμμα της ελληνικής αλφαβήτου φ προς τιμή του Φειδία). Και εύλογα διερωτάται κανείς! Ποιος έβαλε τις συγκεκριμένες γεωμετρικές πληροφορίες στα απειροελάχιστα εγκεφαλικά κύτταρα αυτού του ζουζουνιού;

Και όπως λέει το διαφημιστικό σλόγκαν «Τυχαίο;», Μόνον που εδώ δεν απαντάμε «Δεν νομίζω» αλλά «Βεβαίως όχι!!!». «Δεν είναι καθόλου τυχαίο!!!»

    3.   Η ΚΑΝΟΝΙΚΟΤΗΤΑ ΤΟΥ ΣΧΗΜΑΤΟΣ ΜΙΑΣ ΝΙΦΑΔΑΣ  ΧΙΟΝΙΟΥ
                                                  

" Παρατηρώντας μια νιφάδα χιονιού  στο μικροσκόπιο παρατήρησα ότι είναι ένα θαύμα ομορφιάς και είναι κρίμα να μην μπορεί να ειδωθεί από όλους. Είναι ένα σχεδιαστικό αριστούργημα και κανένα δεν επαναλαμβάνεται παρά εμφανίζεται μόνο μια φορά. Τέτοια ομορφιά τι κρίμα να λιώνει και να χάνεται"

Αυτά είπε ένας αγρότης των Η . Π. Α όταν με το μικροσκόπιο του και την φωτογραφική του μηχανή το 1925 απαθανάτισε τις εικόνες της απίστευτης κανονικότητας , συμμετρίας και καλαισθησίας της νιφάδας του χιονιού.

Η χιονονιφάδα

Ιδωμένη μ' ένα μεγεθυντικό φακό, η ομορφιά της χιονονιφάδας αποκαλύπτεται : ένα μικροσκοπικό γεωμετρικό κόσμημα, μια ζωντανή ένδειξη της περίπλοκης μορφής και της γοητείας που κρύβουν τα σχήματα της φύσης.

Όπως υποδηλώνει κι ο τίτλος του βιβλίου του, ο πρώτος που έθεσε το γρίφο του εξαγωνικού σχήματος της χιονονιφάδας ήταν ο Κέπλερ : " Πρέπει να υπάρχει κάποιος λόγος για τον οποίο, όποτε χιονίζει, οι αρχικοί σχηματισμοί του χιονιού επιδεικνύουν πάντα ένα εξάγωνο σχήμα. Γιατί δεν πέφτουν νιφάδες με πέντε ή επτά γωνίες ; γιατί πάντα με έξι, δεδομένου ότι δεν πέφτουν συμπυκνωμένες, αλλά παραμένουν διάσπαρτες ; "

Έχοντας μεγάλη εμπειρία σχετικά με τα σχήματα της φύσης και τα μαθηματικά τους ανάλογα, ο Κέπλερ έδωσε μια καλή εξήγηση για την εξαπλή συμμετρία της χιονονιφάδας. Γνωρίζοντας ότι το χιόνι αποτελείται από συμπυκνωμένο ατμό, θεώρησε ότι πήζει σε σταγονίδια συγκεκριμένου σχήματος που έχουν επίσης έναν συγκεκριμένο τρόπο επαφής, συμπεραίνοντας ότι : " Το εξαγωνικό σχήμα επιλέγεται από την σχηματική προσαρμογή κι από την αναγκαιότητα της ύλης, έτσι ώστε να μην υπάρχουν κενά και η συγκέντρωση του ατμού σε σχηματισμούς χιονιού να γίνει πιο ομαλά. "

220px-SnowflakesWilsonBentley

Ακόμη, συνδέοντας την εξαπλή μορφή της χιονονιφάδας με την κρυσταλλική φύση του πάγου, γρήγορα κατευθύνθηκε προς την ιδέα ότι αποτελούνται από μεγάλο αριθμό πανομοιότυπων μικροσκοπικών μονάδων συνταιριασμένων σε σχήματα με κανονικότητα.

Όταν λοιπόν κάποιος δει στο μικροσκόπιο μια νιφάδα του χιονιού θα θαυμάσει το συμμετρικό σχήμα της. Πρόκειται για ένα μικροσκοπικό εξαγωνικό κρύσταλλο, που αποτελείται από έξι σχεδόν όμοια πέταλα. Έτσι αν τον περιστρέψουμε κατά 60 ή κατά 120 μοίρες γύρω από το κέντρο του θα φαίνεται ακριβώς όμοιος. O κρύσταλλος δηλαδή παραμένει αναλλοίωτος κάτω από έναν τέτοιο μετασχηματισμό περιστροφής, γεγονός που χαρακτηρίζει τη συμμετρία του.

sn15_small

sn9_small

4. Τα ζώα και τα... ανώτερα μαθηματικά

Αν τα ποτάμια και οι αράχνες εντυπωσιάζουν όσους ασχολούνται με τη γεωμετρία υπάρχουν άλλα ζώα, όπως οι πυγολαμπίδες και τα τζιτζίκια που μας εισάγουν σε? ανώτερα μαθηματικά.

Εδώ και δεκάδες χρόνια βιολόγοι είχαν παρατηρήσει ότι οι αρσενικές πυγολαμπίδες στις όχθες ποταμών της Μαλαισίας και της Ταϊλάνδης κατάφερναν να συγχρονίσουν τις λάμψεις τους με εκπληκτική ακρίβεια. Για την εξήγηση του φαινομένου χρειάστηκε η παρέμβαση φυσικών και μαθηματικών, όπως ο Στίβεν Στρόγκατζ από το πανεπιστήμιο Κορνέλ.

«Ουσιαστικά, έχουμε να κάνουμε με ενα πρόβλημα μαθηματικών και όχι βιολογίας» λεει χαρακτηριστικά ο ίδιος ο Στρόγκατζ, ο οποίος στήριξε τις έρευνές του στη θεωρία της συζευγμένης ταλάντωσης που χρησιμοποιείται για την μελέτη συστημάτων που αλληλεπιδρούν μέσω συντονισμού. Η θεωρία της συζευγμένης ταλάντωσης πρωτοεμφανίστηκε το 17ο αιώνα, όταν μαθηματικοί της εποχής παρατήρησαν πως δυο ή περισσότερα εκκρεμή που βρίσκονταν στο ίδιο δωμάτιο, ύστερα από μεγάλα χρονικά διαστήματα, άρχιζαν να συγχρονίζονται, λόγω των δονήσεων που μετέδιδαν το ενα προς το άλλο μέσω του τοίχου!

Παρεμφερή φαινόμενα συντονισμού τα οποία δεν έχουν εξηγηθεί πλήρως παρατηρούνται αρκετές φορές και σε τζιτζίκια και άλλα ζώα που παράγουν ταυτόχρονα τους ίδιους ήχους.

5. Πρώτοι  αριθμοί και... Τζιτζίκια

Τα τζιτζίκια, όμως, και συγκεκριμένα τα είδη Magicicada Septendecim και magicicada tredecim, παρουσίασαν ενα ακόμα χαρακτηριστικό για την εξήγηση του οποίου οι βιολόγοι ζήτησαν και πάλι τη βοήθεια των μαθηματικών. Και τα δυο αυτά είδη εμφανίζονται κάθε 17 και 13 χρόνια αντίστοιχα, ζευγαρώνουν, γενούν τα αυγά τους και πεθαίνουν.

Το υπόλοιπο διάστημα της ζωής τους παραμένουν ως νύμφες κάτω από το έδαφος. Σημασία εδώ έχει ότι ο κύκλος εμφάνισής τους είναι πάντοτε πρώτος αριθμός, δηλαδή διαιρείται μόνο με τον εαυτό του και τη μονάδα.

Το γεγονός αυτό οδήγησε αρκετούς επιστήμονες στοσυμπέρασμα ότι η μαθηματική αυτή ακρίβεια τα προστατεύει από κάποιο φυσικό κίνδυνο με παρόμοια χαρακτηριστικά περιοδικής εμφάνισης. Ενα σενάριο προέβλεπε ότι το τζιτζίκι επιχειρεί να αποφύγει κάποιο παράσιτο με παρόμοιο κύκλο ζωής. Αν, λόγου χάρη, το παράσιτο εμφανίζεται κάθε 4 χρόνια, το τζιτζίκι «αποφεύγει» έναν κύκλο που διαιρείται με το 4, αν εμφανίζεται κάθε 5 αποφεύγει έναν κύκλο που διαιρείτε με το 5 κ.ο.κ.

6. Η ΧΡΥΣΗ ΑΝΑΛΟΓΙΑ ΚΑΙ Η ΑΚΟΛΟΥΘΙΑ FIBONACCI

Ο Fibonacci ήταν πολύ γνωστός στην εποχή του και αναγνωρίζεται σήμερα ως ο μεγαλύτερος μαθηματικός του Μεσαίωνα. Γεννήθηκε στη δεκαετία του 1170 και πέθανε το 1250.

Η σειρά Fibonacci είναι η σειρά στην οποία ο κάθε αριθμός είναι το άθροισμα των δύο προηγουμένων της σειράς και είναι η 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, ...

Ο λόγος δυο διαδοχικών ζευγαριών της σειράς ονομάζεται χρυσή αναλογία και είναι ο φ=1.618033989.
Ο αντίστροφος του αριθμού είναι ο 0.618033989 δηλαδή 1/φ=φ+1.

Τα φυτά δε γνωρίζουν για την ακολουθία Fibonacci, απλά μεγαλώνουν με τον πιο πρόσφορο και αποδοτικό τόπο. Όμως η ακολουθία κάνει την εμφάνισή της στη διάταξη των φύλων γύρω από το μίσχο. Εμφανίζεται επίσης στην ανάπτυξη των βελόνων αρκετών ειδών ελάτου, καθώς επίσης και στη διάταξη των πετάλων στις μαργαρίτες και τα ηλιοτρόπια. Μερικά κωνοφόρα δένδρα παρουσιάζουν τη σειρά αριθμών στη δομή της επιφάνειας των κορμών τους, ενώ τα φοινικόδενδρα στους δακτυλίους των κορμών τους.

Όμως πώς προκύπτει αυτή η διάταξη, αυτή η συμμετρία σε σχέση με την ακολουθία; Στην περίπτωση του φυλλώματος μπορεί να σχετίζεται με τη μεγιστοποίηση του χώρου που είναι διαθέσιμος για την ανάπτυξη κάθε φύλλου ή το φώς πρέπει να πέφτει πάνω στο κάθε φύλλο. Η φύση προφανώς δεν προσπαθεί να χρησιμοποιήσει την ακολουθία Fibonacci, αυτή εμφανίζεται ώς το δευτερεύον αποτέλεσμα μιας πολύ βαθύτερης φυσικής διαδικασίας.

Οι πολυάριθμες εμφανίσεις της χρυσής αναλογίας, και των χρυσών ορθογωνίων στην τέχνη, είναι αντικείμενο συζητήσεων και ερευνών μεταξύ των ψυχολόγων για το κατά πόσο οι άνθρωποι αντιλαμβάνονται το χρυσό ορθογώνιο για παράδειγμα, ώς πιο όμορφο και αρμονικό σχήμα από οποιοδήποτε άλλο ορθογώνιο. Πέρα όμως από τα επιστημονικά δεδομένα η χρυσή αναλογία, ο αριθμός φ, περιβάλλεται από ένα πέπλο μυστηρίου, κυρίως γιατί εντυπωσιακές προσεγγίσεις του απαντώνται, εντελώς απρόσμενα σε ένα σωρό μέρη στη φύση. Ακόμα και μια τομή του ανθρώπινου DNA φαίνεται να ενσωματώνεται άψογα σε ένα χρυσό δεκάγωνο. Η χρυσή αναλογία και τα σχήματα που σχετίζονται με αυτή συνεχίζουν να κινούν το ενδιαφέρον των μαθηματικών, αλλά και των απλών ανθρώπων.

delfini

Tα μαθηματικά και το τριαντάφυλλο - Ακολουθία Fibonacci

Πιάνει στα χέρια του το τριαντάφυλλο και το παρατηρεί προσεκτικά . Διαπιστώνει ότι πάνω στο λουλούδι τα ροδοπέταλα διατάσσονται σε σπειροειδή μορφή. Παίρνει ένα μαχαιράκι και κόβει το λουλούδι. Ξεκινώντας από το κέντρο καταγράφει μια ομάδα με 5 ροδοπέταλα , που ξεφυτρώνουν  από την ίδια περιοχή,  η αμέσως ευρύτερη ομάδα έχει ( συμπεριλαμβανόμενης των πετάλων της προηγούμενης )   8 ροδοπέταλα συνολικά,  η επόμενη μεγαλύτερη ομάδα

( συμπεριλαμβανόμενων και των εσωτερικών) περιλαμβάνει  συνολικά 13,

η επόμενη 21 και το σύνολο είναι 34 ροδοπέταλα.

Οι συγκεκριμένοι αριθμοί του κάνουν εντύπωση . Τα ροδοπέταλα διατάσσονται έτσι ώστε οι αριθμοί που προκύπτουν να είναι όροι της ακολουθίας Fibonacci.

1, 1, 2, 3, 5, 8, 13, 21, 34, 55. . .

Καθένας από τους όρους της προκύπτει από το άθροισμα των δύο που προηγούνται.

Σε γλώσσα Άλγεβρας     αν = αν-1 + αν-2

Στο τριαντάφυλλο τα ροδοπέταλα που μέτρησε εκείνος ήταν τριαντατέσσερα.

Σε ρόδο με περισσότερα πέταλα θα είναι πενήντα πέντε.

Αν φτιάξουμε μια νέα ακολουθία με όρους τους λόγους των διαδοχικών όρων της προηγούμενης  θα έχουμε     3/2, 5/3, 8/5, 13/8, 21/13, 34/21. . - με προσέγγιση θα είναι 1,5,   1,667,   1,6,   1,625,   1,615   1,619 . .  -  και θα διαπιστώσουμε ότι συγκλίνει προς έναν αριθμό. Μπορούμε να αποδείξουμε ότι ο αριθμός προς τον οποίο συγκλίνει η ακολουθία θα είναι ο φ, ο αριθμός (1+Ö5) /2 ή  - με τρία δεκαδικά -   ίσος με 1, 618, ο αριθμός που αντιστοιχεί στη ΧΡΥΣΗ ΤΟΜΗ.

Χωρίζουμε ένα ευθύγραμμο τμήμα σε δύο κομμάτια. Στη γλώσσα της ελληνικής Γεωμετρίας λέμε ότι κάνουμε μια ΤΟΜΗ η οποία είναι ΧΡΥΣΗ εφόσον ο λόγος του μεγάλου προς το μικρό είναι ίσος με το λόγο ολόκληρου προς το μεγάλο.

Fibona50

fibonacci-nature-2

Η ακολουθία Fibonacci  και τα κουνέλια

Το πρόβλημα έχει ως εξής:

Σε ένα σπίτι στο χωριό γεννιέται ένα ζευγάρι κουνέλια. Τα κουνέλια αυτά χρειάζονται 2 μήνες για να μεγαλώσουν και να αρχίσουν να γεννούν. Έτσι μετά από δύο μήνες το ζευγάρι αυτό γεννά ένα νέο ζευγάρι στην αρχή κάθε μήνα. Τα νέα ζευγάρια μεγαλώνουν και αναπαράγονται κι αυτά με τον ίδιο τρόπο. Πόσα ζευγάρια κουνέλια θα έχουμε μετά από 3 μήνες , 4 μήνες , 6 μήνες , μετά από ένα χρόνο;

Απάντηση:

Στην αρχή του πρώτου μήνα έχουμε 1 ζευγάρι κουνέλια

Στην αρχή του δεύτερου μήνα έχουμε πάλι ένα ζευγάρι

Στην αρχή του τρίτου μήνα το ζευγάρι γεννά και έχουμε 2 ζευγάρια

Στην αρχή του τέταρτου μήνα το πρώτο ζευγάρι γεννά πάλι , αλλά το δεύτερο δεν είναι σε θέση
ακόμη,  δηλαδή 3 ζευγάρια.
Στην αρχή του πέμπτου μήνα γεννά πάλι το αρχικό ζευγάρι , γεννά και το δεύτερο , δε γεννά το τρίτο.
Σύνολο 5 ζευγάρια

aa

Έτσι, το πλήθος των ζευγαριών των κουνελιών στην αρχή κάθε μήνα είναι 1, 1, 2, 3, 5, 8, 13, 21, 34, .. Παρατηρήστε ότι κάθε αριθμός στην ακολουθία είναι το άθροισμα των δύο προηγούμενων. Αυτό είναι λογικό να συμβαίνει μια και στην αρχή κάθε μήνα έχουμε τα ζευγάρια που είχαμε τον προηγούμενο μήνα και επιπλέον τόσα νεογέννητα ζευγάρια όσα και ενήλικα ζευγάρια γονέων έχουμε.

Άρα οι αριθμοί Fibonacci είναι: 1,1,2,3,5,8,13,21,34,55,89,.....  με τον κάθε αριθμό να προκύπτει από το άθροισμα των δύο προηγούμενων του.

1+1=2 , 1+2=3 , 3+5=8 , 5+8=13 ,.....

7. To  σχήμα της γης.

Αποδεικνύεται μαθηματικά ότι το σχήμα της γης ( πεπλατυσμένο σφαιροειδές ) είναι το ιδανικό για την ελαχιστοποίηση της έλξης της βαρύτητας στα εξωτερικά της άκρα.

8. Η αυτοομοιότητα στη φύση

Τρία χαρακτηριστικά παραδείγματα φυσικών αντικειμένων που εκδηλώνεται η αυτοομοιότητα είναι το κουνουπίδι, η φτέρη και οι ακτογραμμές.

Image141α. Η φτέρη ανήκει στην κατηγορία των φυτών που εκδηλώνουν την ιδιότητα τηςαυτοομοιότητας με τον καλύτερο τρόπο. Μια φτέρη αποτελείται από φύλλα καθένα από τα οποία αποτελείται από πολλά μικρότερα. Και αυτά ακόμα τα μικρά φύλλα αποτελούνται από ακόμα μικρότερα που διατηρούν την ίδια δομή με τη φτέρη.

β. Αν από ένα κουνουπίδι αποσπάσουμε ένα κομμάτι θα διαπιστώσουμε ότι αυτό μοιάζει με το αρχικό, θα είναι ένα μικρότερο αντίγραφο. Αν από το πρώτο αποσπάσουμε ένα κομμάτι θα διαπιστώσουμε ότι είναι ακόμα μικρότερο αλλά εξακολουθεί να μοιάζει με το αρχικό.

γ. Ας παρατηρήσουμε χάρτες που περιγράφουν ακτογραμμές σε διαφορετικές κλίμακες. Αυτό που μας αποκαλύπτεται είναι μια όμοια κατανομή κόλπων και ακρωτηρίων. Μπορούμε να θεωρήσουμε ότι μια ακτογραμμή παρουσιάζει φράκταλ δομή με την έννοια ότι αν μεγεθύνεται εμφανίζονται νέοι κόλποι και α κρωτήρια και παρόλα αυτά εξακολουθεί να μοιάζει με ακτογραμμή.

Η αυτοομοιότητα στα μαθηματικά φράκταλ.

KochFrillFlake3_1000Η στοιχειώδης μοντελοποίηση μιας φτέρης μπορεί να πραγματοποιηθεί με τη χρήση ενός υπολογιστικού περιβάλλοντος. Ένα μικρό πρόγραμμα που περιλαμβάνει πολλαπλές αναδρομικές κλήσεις, συνήθως, είναι αρκετό για να μοντελοποιήσουμε ορισμένα ενδιαφέρονα μαθηματικά φράκταλ όπως για παράδειγμα η φτέρη, το τρίγωνο του Sierpinski, τα φράκταλ δέντρα και η χιονονιφάδα του Koch η οποία φαίνεται στην παρακάτω εικόνα. Δείχνει ένα ισόπλευρο τρίγωνο με μήκος πλευράς 3l. Στο κεντρικό τμήμα κάθε πλευράς τοποθετείται ένα όμοιο τρίγωνο με μήκος πλευράς l και η διαδικασία επαναλαμβάνεται απεριόριστα, δίνοντας ως αποτέλεσμα την λεγόμενη νιφάδα τού Koch.

'Ενα άλλο βασικό χαρακτηριστικό ενός φράκταλ είναι η μαθηματική παράμετρος που ονομάζεται διάσταση fractal D.

Αυτό είναι ένα χαρακτηριστικό που παραμένει το ίδιο άσχετα με το πόσο πολύ θα μεγεθυνθεί το αντικείμενο ή υπό ποία γωνία θα παρατηρηθεί. Η διάσταση fractal εκφράζεται με εναν μη ακέραιο αριθμό, δηλαδή από ένα "κλάσμα", αντίθετα προς την ευκλείδεια γεωμετρία.

mandel1

Στο παραπάνω παράδειγμα, η περίμετρος κάθε σχήματος αυξάνει σε σχέση με αυτή τού αμέσως προηγουμένου σχήματος κατά τον λόγο 4 προς 3. Η διάσταση fractal D είναι η δύναμη στην οποία πρέπει να υψωθεί το 3 για να δώσει 4, δηλαδή 3D = 4. Η διάσταση που χαρακτηρίζει την περίμετρο τού fractal του ανωτέρω σχήματος είναι log4/log3 ή πρoσεγγιστικά 1 ,26.

Το μήκος της περιμέτρου τού fractal είναι 3l*(4/3)*(4/3).... δηλαδή άπειρο, αλλά περικλείει ένα πεπερασμένο εμβαδόν που είναι μικρότερο από το εμβαδόν τού περιγεγραμμένου κύκλου στο αρχικό τρίγωνο. Η διάσταση fractal D αποκαλύπτει ακριβώς τις λεπτές διαφορές και την πολυπλοκότητα ενός μη ευκλείδειου σχήματος.

9. Βιομαθηματικά σχέδια

Πώς οι ζωντανοί οργανισμοί εκφράζουν πολύπλοκες συμπεριφορές και σχέδια, που δεν είναι προγραμματισμένα στο γενετικό τους κώδικα. 

Παρά τη χαμηλή της θέση στο δέντρο της ζωής, η αμοιβάδα Δικτυοστήλιο επιστημονικά, όπως λέγεται αυτό το είδος μούχλας, καταφέρνει να σχηματίσει θαυμάσια σπειροειδή σχήματα. Σε ποιο βαθμό αυτά τα σχέδια είναι προδιαγεγραμμένα στα γονίδια της αμοιβάδας; Υπάρχει πραγματικά γονίδιο για σπείρες;

getImage

Για να απαντήσουμε στην ερώτηση αυτή πρέπει να ξέρουμε πώς οι αμοιβάδες φτιάχνουν τις σπείρες. Τα σχέδια αυτά είναι στην πραγματικότητα αποτέλεσμα μιας συλλογικής δραστηριότητας. Τα σχέδια εμφανίζονται όταν η τροφή αρχίσει να μειώνεται. Οι αμοιβάδες αρχίζουν να πλησιάζουν προς ένα σημείο και στην πορεία αυτή συνήθως σχηματίζουν μια όμορφη λεπτή σπείρα. Το πλήθος των αμοιβάδων γίνεται όλο και πιο πυκνό και η σπείρα πιο σφιχτή. Σε κάποιο σημείο «σπάει» σε κλάδους. Τα κλαδιά παχαίνουν και καθώς όλο και περισσότερες αμοιβάδες προσπαθούν να φτάσουν στο κέντρο της σπείρας σχηματίζουν ένα σωρό, γνωστό σαν «γυμνοσάλιαγκα» (δεν έχει καμιά σχέση με το μαλάκιο γυμνοσάλιαγκας).

Ο «γυμνοσάλιαγκας» είναι μια αποικία αμοιβάδων, αλλά κινείται σαν να ήταν ένας οργανισμός. Μόλις βρει ένα στεγνό μέρος προσδένεται στο έδαφος και αναπτύσσει ένα βλαστό. Στην κορυφή του βλαστού σχηματίζεται μια σφαίρα που περικλείει αμοιβάδες που μεταμορφώθηκαν σε σπόρους. Κάποια στιγμή ο αέρας παρασύρει τους σπόρους και ο κύκλος ξαναρχίζει απ' την αρχή.

Ο Τόμας Χόφερ, βιοφυσικός στο Πανεπιστήμιο Χούμπολτ του Βερολίνου ανακάλυψε ένα απλό σύστημα μαθηματικών εξισώσεων που αναπαράγει τόσο τις σπείρες των αμοιβάδων όσο και τα σχέδια που κάνουν κατά τη διαδικασία συγκέντρωσής τους.

10.  ΑΛΓΟΡΙΘΜΟΣ ΒΕΛΤΙΣΤΟΠΟΗΣΗΣ  ΑΠΟΙΚΙΩΝ ΜΥΡΜΗΓΚΙΩΝ.

Τα μυρμήγκια αναπτύσσουν μια τεχνική για να βρουν τη συντομότερη διαδρομή από τη φωλιά τους προς την πηγή της τροφής τους και αντίθετα. Τα μυρμήγκια ξεκινούν την αναζήτηση της τροφής γύρω από την πηγή με τυχαίο τρόπο και καθώς κινούνται αφήνουν μια ποσότητα μίας ουσίας που ονομάζεται φερομόνη και με αυτό τον τρόπο μαρκάρουν το μονοπάτι που έχουν διανύσει. Η ποσότητα της φερομόνης στο κάθε μονοπάτι εξαρτάται από την απόσταση, την ποιότητα και την ποσότητα της τροφής που βρέθηκε. Το επόμενο μυρμήγκι που θα φύγει από τη φωλιά του είναι πολύ πιθανό να ακολουθήσει τη φερομόνη που θα υπάρχει σε κάποιο μονοπάτι, αφήνοντας μια ποσότητα φερομόνης στο ίδιο μονοπάτι. Καθώς η ποσότητα φερομόνης στο συγκεκριμένο μονοπάτι όλο και αυξάνεται, όλο και περισσότερα μυρμήγκια ακολουθούν αυτό το μονοπάτι. Όμως καθώς η ώρα περνάει η φερομόνη, ιδιαίτερα από τα μονοπάτια που δεν πηγαίνουν πολλά μυρμήγκια, ελαττώνεται. Τελικά από όλα τα υπόλοιπα μονοπάτια η φερομόνη εξαφανίζεται και όλα τα μυρμήγκια ακολουθούν τελικά το ίδιο μονοπάτι, που είναι και η βέλτιστη ή η σχεδόν - βέλτιστη λύση....

__________

 Πηγή:  mathmosxos.blogspot.gr

by Αντικλείδι , http://antikleidi.com

Κατηγορίες:
Νέα
web design by