Ο γαλαξίας «ακιδωτός τροχός» (γνωστός και ως NGC 5457 ή Messier 101 ή M101) βρίσκεται σε απόσταση 27 εκατομμυρίων ετών φωτός από τη Γη στον αστερισμό της Μεγάλης Άρκτου. Η παραπάνω σύνθετη εικόνα του ακιδωτού τροχού συνδυάζει δεδομένα από τέσσερα διαστημικά τηλεσκόπια της NASA (Spitzer, Hubble, GALEX, Chandra) που «βλέπουν» σε διαφορετικές περιοχές του ηλεκτρομαγνητικού φάσματος, από την υπέρυθρη ακτινοβολία μέχρι τις ακτίνες Χ. Η τελική σύνθετη εικόνα (πάνω) είναι αυτό που θα βλέπαμε αν μπορούσαμε να παρατηρήσουμε τον γαλαξία ταυτόχρονα: με κανονική κάμερα, με γυαλιά νυχτερινής όρασης, με υπεριώδη κάμερα και με όραση ακτίνων Χ !
Αστρονομία (11 άρθρα)
Διονύσης Σιμόπουλος: Ταξίδι στους ωκεανούς των άστρων (τροπικά ζώα και νέοι αστερισμοί στο νότιο ημισφαίριο)
Αρθρο των Διονύση Σιμόπουλου και Ηλία Μαγκλίνη στην Καθημερινή (26/6/2020):
«Βίωσα την πλέον ζωντανή επαφή μου με την απεραντοσύνη της φύσης χρόνια πριν στο Αιγαίο Πέλαγος», έγραφε το 2013 στο περιοδικό Harper’s ο φυσικός και συγγραφέας Αλαν Λάιτμαν (Alan Lightman, «Our Place in the Universe», από την ανθολογία «The Best American Science and Nature Writing», επιμ. Siddhartha Mukherjee, εκδ. Houghton Mifflin Harcourt).
Ο Λάιτμαν –γνωστός στο ελληνικό αναγνωστικό κοινό από τα βιβλία «Τα όνειρα του Αϊνστάιν» (εκδ. Κάτοπτρο), «Η ώρα των άστρων» (εκδ. Κάτοπτρο), «Mr g: Το πείραγμα του Θεού» (εκδ. Τραυλός) κ.ά.– περιγράφει πώς ενοικίασε ένα ιστιοπλοϊκό με τη γυναίκα του και σάλπαραν νύχτα από τον Πειραιά. Αφού άφησαν το Σούνιο και κατευθύνθηκαν προς την Υδρα, σιγά σιγά, στεριά και άλλα πλεούμενα χάθηκαν από τον ορίζοντα.
«Κοιτώντας ολόγυρά μας», γράφει, «μπορούσαμε να δούμε μονάχα το νερό να εκτείνεται προς όλες τις κατευθύνσεις έως ότου ενώθηκε με τον ουρανό. Αισθάνθηκα ασήμαντος, παραπεταμένος, ένα μικρό, αλλόκοτο πετραδάκι μέσα σε αυτό το σπήλαιο πελάγους και ουρανού». Οποιος έχει ταξιδέψει στο Αιγαίο νύχτα με ιστιοφόρο πρέπει να έχει νιώσει τα ίδια ακριβώς συναισθήματα με εκείνα του Λάιτμαν – όπως επίσης τη σαγήνη, τη γαλήνη, το δέος απέναντι σε αυτή την φαντασμαγορία του έναστρου ουρανού, ο οποίος αποκτά αίφνης μυρωδιά, της αλμύρας, και ήχο, αυτόν του παφλασμού.
Πράγματι, η θάλασσα, το πέλαγος, ο ωκεανός, ενώνονται νοητά με τον ουρανό, τον ουρανό της ημέρας αλλά κυρίως της νύχτας. Μοιάζουν τόσο συγγενή, μακρινά αλλά και τόσο κοντινά αδέλφια: όχι τυχαία, οι αστροναύτες εκπαιδεύονται για τις συνθήκες μηδενικής βαρύτητας και για τους «διαστημικούς περιπάτους» μέσα σε ειδικές δεξαμενές νερού.
Η σχέση νυχτερινού ουρανού και θάλασσας πηγαίνει πολύ πίσω, πολύ πριν τα διαστημικά προγράμματα και τον σύγχρονο τουρισμό. Οι αρχαίοι ναυτικοί χρησιμοποιούν τους 88 αστερισμούς εδώ και χιλιάδες χρόνια. Για παράδειγμα, μολονότι δεν είναι τόσο μεγάλη ή φωτεινή όσο η Μεγάλη Αρκτος, η Μικρά Αρκτος ήταν πάντοτε ιδιαιτέρως χρήσιμη για πολλές κουλτούρες στο ζήτημα του προσανατολισμού επειδή δεν κινείται όπως άλλοι αστερισμοί, έτσι καθώς βρίσκεται στον βόρειο αστρικό πόλο. Εάν οι ναυτικοί μπορούσαν να εντοπίσουν τη Μικρά Αρκτο, ήξεραν προς τα πού πέφτει ο βορράς.
Ενα από τα πρόσφατα γνωστά τραγούδια, με αρκετή μάλιστα επιτυχία, αναφέρει στους στίχους του, μεταξύ άλλων, και τα εξής: «Ποιος είδε νύχτα με δυο φεγγάρια/ ποιος είδε ήλιο σαν αχινό/ κι ερωτευμένα πουλιά και ψάρια/ να κολυμπάνε στον ουρανό». Παρόλο που οι στίχοι αυτοί φαίνονται ίσως λίγο… παράλογοι, εν τούτοις έχουν μια δόση αλήθειας αν αναλογιστεί κανείς ότι υπάρχουν πράγματι τέσσερα τουλάχιστον ψάρια που «κολυμπάνε στον ουρανό»! Πρόκειται φυσικά για τους αστερισμούς των Ιχθύων, του Νότιου Ιχθύος και του Ιπτάμενου Ιχθύος, ο πρώτος μάλιστα απ’ αυτούς φαίνεται στον ουρανό στη διάρκεια του φθινόπωρου και περιλαμβάνει δύο ψάρια συνδεδεμένα μεταξύ τους με μια μακριά μεταξωτή κορδέλα.
Ο αστερισμός των Ιχθύων είναι από τους αρχαιότερους αστερισμούς αν και δεν είναι εύκολα αναγνωρίσιμος. Για να εντοπιστεί ευκολότερα βρίσκουμε πρώτα το μεγάλο τετράπλευρο του Πήγασου, του φτερωτού αλόγου, και κάτω από το τετράπλευρο βρίσκουμε μια κυκλική συστάδα άστρων που σχηματίζει τον πρώτο Ιχθύν, ενώ στο πλάι του τετράπλευρου υπάρχει μια άλλη συστάδα άστρων που αντιπροσωπεύει τον δεύτερο Ιχθύν. Οι δύο αυτές αστρικές συστάδες, οι ουρές των Ιχθύων, ενώνονται μεταξύ τους με μια κορδέλα που αντιπροσωπεύεται από μια λεπτή σειρά άστρων.
Οι πρώτοι, και βασικότεροι, αστερισμοί καταγράφηκαν πριν από περίπου 2.300 χρόνια από τον Ελληνα αστρονόμο Εύδοξο, για να τους αντιγράψει στη συνέχεια ο Αρατος. Μερικές εκατοντάδες χρόνια αργότερα, ο Κλαύδιος Πτολεμαίος συνέταξε έναν κατάλογο και σχεδίασε τα σχήματα όλων των αστέρων που υπάγονται σε αστερισμούς στην περίφημη «Αλμαγέστη» (ή Μαθηματική Σύνταξις). Οπως μας υπενθυμίζει η Σάρα Γκίλινχαμ στο εξαιρετικό λεύκωμα για μικρούς και μεγάλους «Κοιτάζοντας τα αστέρια» (εκδ. Καπόν), σχεδόν χίλια χρόνια μετά τον Πτολεμαίο, «και περισσότερα από 1.600 χιλιόμετρα μακριά, ένας Πέρσης αστρονόμος, ο Αλ-Σούφι, μετέφρασε το βιβλίο του Πτολεμαίου στα αραβικά, προσθέτοντας τις δικές του αστρικές παρατηρήσεις. (…) Κάμποσους αιώνες αφότου τα πρώτα χειρόγραφα αντίγραφα βρήκαν τον δρόμο τους στην Ευρώπη, το βιβλίο του Αλ-Σούφι μεταφράστηκε στα λατινικά. Αυτός είναι και ο λόγος που βρίσκουμε σε αστερισμούς και αστέρες ελληνικές, αραβικές και λατινικές λέξεις».
Ο κατάλογος του Πτολεμαίου πάντως αποτελεί τη βάση του επίσημου συστήματος των αστερισμών που χρησιμοποιούν έως σήμερα οι επιστήμονες. Το ενδιαφέρον όμως είναι ότι η ανακάλυψη των νεότερων αστερισμών, ειδικά στο νότιο ημισφαίριο, οφείλεται σε μερικούς πρωτοπόρους θαλασσοπόρους εξερευνητές. Κατά την Γκίλινχαμ, «ο Πτολεμαίος και ο Αλ-Σούφι δεν μπορούσαν να ταξιδέψουν μακριά για να διακρίνουν τα άστρα στο νότιο ημισφαίριο, εκατοντάδες χρόνια αργότερα όμως, όταν Ιταλοί, Γάλλοι, Ολλανδοί και Πολωνοί εξερευνητές ταξίδεψαν στις θάλασσες του νότου, είδαν πολλά άστρα για πρώτη φορά, χαρτογραφώντας νέους αστερισμούς».
Ο Γαλιλαίος
Τίποτε από όλα αυτά δεν θα ήταν δυνατόν αν δεν είχε προηγηθεί ο Γαλιλαίος και η ευρεία, και εξελιγμένη, χρήση του τηλεσκοπίου. Είναι μάλιστα πολύ πιθανό πολλές από τις πρώτες αστρικές παρατηρήσεις και τους σχηματισμούς νέων αστερισμών να έγιναν από το κατάστρωμα κάποιας ευρωπαϊκής καραβέλας που έπλεε στις απέραντες θάλασσες του Ινδικού και του Ειρηνικού ωκεανού.
Βρισκόμαστε βέβαια στο απόγειο της Αναγέννησης. Κατά την Γκίλινχαμ: «Η εποχή αυτή είναι γνωστή ως η Εποχή των Ανακαλύψεων, τότε που οι Ευρωπαίοι εξερευνούσαν σε βάθος το έδαφος, τη θάλασσα και τον ουρανό. Οι αστρονόμοι αντιλήφθηκαν ότι υπήρχαν ακόμα πολλές περιοχές στον ουρανό οι οποίες δεν περιλάμβαναν αστερισμούς επίσημα χαρτογραφημένους, οπότε, άρχισαν να ανακαλύπτουν όσα περισσότερα άστρα μπορούσαν και να τα συνδέουν σε εικόνες. (…) Τα ταξίδια τους στις ακτές της Αυστραλίας ή της Ινδονησίας, για παράδειγμα, τους έδωσαν την ευκαιρία να ανακαλύψουν εξωτικά ζώα που έβλεπαν για πρώτη φορά, όπως τον χαμαιλέοντα και το πτηνό τουκάν. (…) Τα παραδείσια πτηνά, τα χελιδονόψαρα και τα τουκάν δεν ζουν στην Ολλανδία, την Πολωνία ή τη Γαλλία, συνεπώς η θέα αυτών των εξωτικών πλασμάτων πρέπει να συνάρπασε και να ενέπνευσε τους Ευρωπαίους εξερευνητές που χαρτογραφούσαν αστερισμούς. Οι αστρονόμοι ονομάτιζαν τους αστερισμούς με βάση πολλά από τα ζώα που ανακάλυπταν στα μέρη όπου ταξίδευαν, όπως στους Παπούα της Νέας Γουινέας, στη Νότια Ασία και στη Νοτιοανατολική Ασία. (…) Σε αυτούς τους αστρονόμους περιλαμβάνονται οι Ολλανδοί εξερευνητές Πίετερ Ντίρκζουν Κέιζερ και Φρέντερικ ντε Χούτμαν, οι οποίοι ταξίδεψαν μαζί στα τέλη του 16ου αιώνα. Ο Ολλανδός χαρτογράφος και αστρονόμος Πέτρους Πλάνκιους ακολούθησε τις σημειώσεις των Κέιζερ και Ντε Χούτμαν που αυτοί του έδωσαν στα 1595 και δημιούργησε νέα άστρα στον ουρανό».
Ενδεικτικά, ένας από όλους αυτούς τους νεότερους αστερισμούς που γεννήθηκαν… καταμεσής της θάλασσας είναι ο Χαμαιλέων (Chamaeleon). Οι Ολλανδοί εξερευνητές που δημιούργησαν τον αστερισμό προφανώς είδαν πολλούς χαμαιλέοντες στη Μαδαγασκάρη, έναν από τους πιο ενδιαφέροντες σταθμούς τους κατά τον ρουν τους στο νότιο ημισφαίριο προκειμένου να χαρτογραφήσουν τα αστέρια.
Ενας άλλος τέτοιος αστερισμός είναι η Δοράς (Dorado), πολύ μικρός αστερισμός που βρίσκεται κοντά στο Μεγάλο Νέφος του Μαγγελάνου. Μοιάζει πολύ με ξιφία και ενίοτε απεικονίζεται ως ξιφίας. Η ονομασία Δοράς παραπέμπει στον Ιπτάμενο Ιχθύν, η ισπανική ρίζα (Dorado) παραπέμπει στο «χρυσόψαρο» αλλά κυρίως στο «δελφινόψαρο». Τα δελφινόψαρα απαντούν σε ζεστά τροπικά νερά και δεν έχουν σχέση με τα δελφίνια. Τα δελφινόψαρα λέγονται «μάχι-μάχι» στις θάλασσες του Ειρηνικού.
Οι Ολλανδοί εξερευνητές είχαν εντυπωσιαστεί τόσο πολύ από όλα αυτά τα απίθανα πλάσματα που έβλεπαν στα ταξίδια τους στο νότιο ημισφαίριο, ώστε δημιούργησαν πολλούς αστερισμούς για να τα τιμήσουν. Είχαν δει δελφινόψαρα να κυνηγούν χελιδονόψαρα γι’ αυτό και τοποθέτησαν τη Δοράδα κοντά στον Ιπτάμενο Ιχθύν.
Ο αστερισμός του Ινδού
Ενα ακόμα παράδειγμα: ο αστερισμός του Ινδού (Indus). Αρχικά απεικονιζόταν ως ιθαγενής που οι Ολλανδοί εξερευνητές συνάντησαν στα ταξίδια τους στις Ανατολικές Ινδίες, στη νότια Αφρική ή στη Μαδαγασκάρη. Οπως γράφει η Γκίλινχαμ, «η χρήση του όρου δείχνει πόσο εσφαλμένα οι εξερευνητές θεωρούσαν ότι όλοι οι ιθαγενείς ήταν ίδιοι σε όλα τα μέρη, ενώ στην πραγματικότητα ήταν ξεχωριστά άτομα με συγκεκριμένα ονόματα για τις φυλές και τις κοινότητές τους».
Μπορούμε μονάχα να φανταστούμε τους εξερευνητές αστρονόμους, είτε από κάποιο κατάστρωμα είτε από κάποιο τροπικό νησί, να αφήνουν τη ματιά τους να χάνεται στην τρομακτική αυτή αστροφεγγιά: ο νεωτερικός άνθρωπος πήρε έτσι μια καλή γεύση απεραντοσύνης. Οπως μπορεί να συμβεί και σήμερα στον καθένα μας.
«Δεκαετίες πριν, όταν ταξίδεψα με τη γυναίκα μου στο Αιγαίο», γράφει ο Λάιτμαν, «εν μέσω του ατελείωτου νερού και του ουρανού, το άπειρο μου έκανε μια ελάχιστη νύξη. Ηταν μια αίσθηση που ουδέποτε είχα νιώσει, συνοδευόμενη από δέος, φόβο, τον τρόμο του υψηλού, αποπροσανατολισμό, απομόνωση και δυσπιστία. Εθεσα μια πορεία 255 μοιρών, εμπιστευόμενος την πυξίδα μου –έναν μικροσκοπικό δίσκο με βαμμένους αριθμούς και μια περιστρεφόμενη μεταλλική βελόνη– και ήλπισα για το καλύτερο. Μέσα σε λίγες ώρες, ως διά μαγείας, μια χλωμή, ωχρή σταλιά γης εμφανίστηκε μπροστά μας, κάτι που μας πλησίαζε συνεχώς, ένας τόπος με σπίτια και κρεβάτια και άλλα ανθρώπινα πλάσματα».
Πηγή: kathimerini.gr
Ηλιοβασιλέματα σε άλλους κόσμους του διαστήματος!
Η δυνατότητα να παρακολουθήσει κανείς ένα ηλιοβασίλεμα από έναν άλλον πλανήτη του ηλιακού μας συστήματος μπορεί πρακτικά να μην υπάρχει ακριβώς- αλλά αυτό δεν σημαίνει πως αυτή η εμπειρία δεν μπορεί να προσομοιωθεί.
Ο Τζερόνιμο Βιλανουέβα, πλανητικός επιστήμονας του Goddard Space Flight Center της NASA δημιούργησε μια σειρά προσομοιώσεων ηλιοβασιλεμάτων ενώ δημιουργούσε ένα εργαλείο computer modeling για μια πιθανή μελλοντική αποστολή στον Ουρανό- έναν παγωμένο πλανήτη στο εξώτερο ηλιακό μας σύστημα. Κάποια στιγμή στο μέλλον ένα σκάφος μπορεί να πραγματοποιήσει κάθοδο στην ατμόσφαιρα του Ουρανού, με το εργαλείο του Βιλανουέβα να βοηθά τους επιστήμονες να ερμηνεύσουν τις μετρήσεις φωτός εκεί, που θα επιτρέψουν την εξαγωγή συμπερασμάτων σχετικά με τη χημική σύνθεση της ατμόσφαιρας.
Για να επιβεβαιώσει την ακρίβεια του εργαλείου του, ο Βιλανουέβα προσομοίωσε γνωστά χρώματα από τον Ουρανό και άλλους πλανήτες. Οι προσομοιώσεις δείχνουν τον ήλιο να εμφανίζεται να δύει από την οπτική γωνία κάποιου που βρίσκεται σε αυτούς τους κόσμους. Καθώς οι πλανήτες αυτοί περιστρέφονται και τμήματά του «κρύβονται» από το φως του ήλιου, φωτόνια διασκορπίζονται σε διαφορετικές κατευθύνσεις, ανάλογα με την ενέργειά τους και τα είδη μορίων στις ατμόσφαιρες. Το αποτέλεσμα είναι μια «παλέτα» χρωμάτων που είναι ορατά από αυτούς τους κόσμους.
Τα animations δείχνουν εικόνες του ουρανού όπως θα φαίνονταν εάν κάποιος κοιτούσε από έναν πολύ ευρύ φακό κάμερας από τη Γη, την Αφροδίτη, τον Άρη, τον Ουρανό και τον Τιτάνα. Οι προσομοιώσεις αυτές αποτελούν έναν νέο χαρακτηριστικό ενός ευρέως χρησιμοποιούμενου online εργαλείου, του Planetary Spectrum Generator, που αναπτύχθηκε από τον Βιλανουέβα και τους συναδέλφους στο Goddard και βοηθά τους επιστήμονες να αναπαράγουν τον τρόπο με τον οποίο το φως περνά μέσα από τις ατμόσφαιρες πλανητών, εξωπλανητών, φεγγαριών και κομητών, προκειμένου να κατανοηθεί η σύσταση των ατμοσφαιρών και των επιφανειών τους.
Πόσο καλά ξέρουμε τη Γη μας;
Αν και η επιστήμη έχει προχωρήσει σε σημαντικές διαπιστώσεις ως προς θέματα που έχουν να κάνουν με τον πλανήτη μας, αλλά και το σύμπαν που τον περιβάλλει, υπάρχουν μερικά θέματα για τη Γη, που μπορεί να μας διαφεύγουν. Πάνε πολλά χρόνια από τότε που εγκαταλείφτηκε η ιδέα πως η Γη είναι επίπεδη και ίσως οι περισσότεροι από μάς να πιστεύουμε ότι γνωρίζουμε πλέον τις βασικές επιστημονικές γνώσεις για τον πλανήτη μας, μέσα από τον απλό δρόμο της παρατήρησης των φυσικών στοιχείων.
Νομίζετε πως ξέρετε τα πάντα για τη Γη; Ε λοιπόν υπάρχουν κάποια στοιχεία που κατά πάσα πιθανότητα δεν είχατε σκεφτεί πως μπορεί να ισχύουν…
1. Η Γη δεν είναι στρογγυλή!
Αν και η Γη είναι σφαιρική, εντούτοις, λόγω των βαρυτικών δυνάμεών της, δεν αποτελεί έναν τέλειο κύκλο. Στην πραγματικότητα, υπάρχει ένα εξόγκωμα γύρω από τον ισημερινό λόγω αυτού του γεγονότος. Η πολική ακτίνα της Γης είναι 3.949.99 μίλια, ενώ η ακτίνα του Ισημερινού είναι 3.963.34 μίλια.
2. Το όνομα «Earth» προέρχεται από τους Αγγλοσάξονες
Όλοι οι υπόλοιποι πλανήτες του ηλιακού μας συστήματος έχουν πάρει το όνομά τους από έναν ελληνικό ή ρωμαϊκό Θεό, εκτός από τον πλανήτη μας. Η αγγλική λέξη για τη Γη προέρχεται από την πρωτο-αγγλοσαξονική λέξη Erda, που σημαίνει «έδαφος» ή «χώμα» και πιστεύεται ότι είναι 1.000 ετών. Κατά ειρωνικό τρόπο, ο πλανήτης μας καλύπτεται κατά 71% από νερό και είναι ο μόνος πλανήτης που γνωρίζουμε σε ολόκληρο το σύμπαν που έχει αυτό το πολύτιμο συστατικό σε υγρή μορφή.
3. Η μέρα δεν έχει 24 ώρες!
Οι άνθρωποι συχνά ισχυρίζονται ότι δεν… υπάρχουν αρκετές ώρες μέσα στην ημέρα και έχουν δίκιο! Δεν υπάρχουν καν 24. Καλά ακούσατε. Ο πραγματικός χρόνος που χρειάζεται ο πλανήτης για να περιστραφεί γύρω από τον άξονά του, είναι 23 ώρες 56 λεπτά και 4 δευτερόλεπτα. Πρόκειται γι’ αυτό που ονομάζεται αστρική ημέρα. Η ηλιακή ημέρα, ο χρόνος δηλαδή που χρειάζεται ο ήλιος για να επιστρέψει στο ίδιο σημείο επί του μεσημβρινού, ποικίλλει τόσο πολύ, όσο 16 λεπτά όλο το χρόνο, λόγω της θέσης του στην τροχιά του.
4. Η Γη είναι ο μόνος πλανήτης με τεκτονικές πλάκες
Οι επιστήμονες πιστεύουν ότι η Γη αποτελείται από 7 μεγάλες πλάκες, που μετακινούνται σε διαφορετικές κατευθύνσεις έως και 4 ίντσες ανά έτος. Όταν συγκρούονται η μια με την άλλη, σύμφωνα με τη θεωρία, δημιουργούνται τα βουνά. Όταν απομακρύνονται μεταξύ τους σχηματίζονται οι κοιλάδες. Επίσης, αν λάβουμε υπόψη την τρομακτική πλευρά αυτού του γεγονότος, οι πλάκες αυτές και η σύγκρουσή τους, αποτελούν την αιτία για την οποία προκαλούνται οι σεισμοί και τα ηφαίστεια. Τα καλά νέα είναι ότι όλη αυτή η δραστηριότητα, επιτρέπει στον άνθρακα που είναι ουσιαστικής σημασίας για την ίδια την ύπαρξή μας, να ανακυκλωθεί και να αναπληρωθεί, επιτρέποντας στη ζωή όπως την ξέρουμε να συνεχίζεται.
5. Η Γη είχε έναν δίδυμο πλανήτη που ονομαζόταν «Θεία»
Οι επιστήμονες πιστεύουν τώρα ότι κάποτε δεν ήμασταν μόνοι μας σε τροχιά γύρω από τον Ήλιο. Η Γη είχε ένα «δίδυμο» πλανήτη με το μέγεθος του Άρη που ονομαζόταν «Θεία» και ήταν 60 μοίρες είτε μπροστά είτε πίσω (όπως το βλέπει κανείς) από τον πλανήτη μας. Ένα απόγευμα, περίπου 4.533 δισεκατομμύρια χρόνια πριν, ο πλανήτης «Θεία», συνετρίβη με τη Γη. Το μεγαλύτερο μέρος αυτού του πλανήτη απορροφήθηκε, αλλά ένα μεγάλο κομμάτι του, συνδυασμένο με υλικά από τον πλανήτη μας, δημιούργησε τη Σελήνη. Ο λόγος που οι επιστήμονες πιστεύουν κάτι τέτοιο είναι επειδή η Σελήνη είναι ασυνήθιστα μεγάλη για έναν πλανήτη του δικού μας μεγέθους και έχει μεταλλικά ισότοπα παρόμοια με αυτά της Γης.
6. Η μυστηριώδης και (σχεδόν) τέλεια τροχιά της Σελήνης
Μιλώντας για τη Σελήνη υπάρχουν και μερικά πράγματα που δεν γνωρίζουμε με σιγουριά. Για παράδειγμα, το κέντρο της Σελήνης είναι 6.000 πόδια πιο κοντά στη Γη, κάτι το οποίο θα έπρεπε να προκαλέσει στην τροχιά της μεγαλύτερη αστάθεια, αλλά η τροχιά της είναι σχεδόν τέλεια κυκλική. Η Σελήνη καλύπτεται με μια σκόνη που περιέργως μυρίζει σαν μπαρούτι, παρόλο που αποτελείται από εντελώς διαφορετικά υλικά. Επίσης, ενώ δεν υπάρχει «σκοτεινή πλευρά» του φεγγαριού, η βαρυτική δύναμη της Γης έχει κάνει τη Σελήνη να επιβραδύνει έτσι ώστε να περιστρέφεται μόνο μία φορά κατά τη διάρκεια ενός μηνός (αυτό αναφέρεται και ως «συγχρονισμένη περιστροφή») – γι’ αυτό κιόλας μόνο μία πλευρά της σελήνης «βλέπει» προς τη Γη. Επιπλέον, είναι μια αρκετά απίστευτη σύμπτωση το ότι ο Ήλιος συμβαίνει να είναι 400 φορές μεγαλύτερος από τη Σελήνη, αλλά και 400 φορές μακρύτερα από τη Γη, με αποτέλεσμα να φαίνεται στον ουρανό πως έχουν το ίδιο μέγεθος.
7. Πάνω από το 90% των ωκεανών παραμένει ανεξερεύνητο
Μπορεί να γνωρίζουμε πολλά για το φεγγάρι και στον Άρη, αλλά η αλήθεια είναι πως μόλις πρόσφατα αρχίσαμε να εξερευνούμε τους απέραντους ωκεανούς μας. Στην πραγματικότητα, λιγότερο από το 10% των απέραντων, βαθιών μπλε θαλασσών μας έχουν εξερευνηθεί. Ο ωκεανός περιέχει το 97% του νερού μας και το 99% του ζωικού βασιλείου. Ενώ έχουμε εντοπίσει 212.906 θαλάσσια είδη, υπάρχουν πιθανώς 25 εκατομμύρια ακόμη για τα οποία δεν γνωρίζουμε τίποτα.
8. Η ψυχρότερη θερμοκρασία που καταγράφηκε ποτέ ήταν -89,2 βαθμοί Κελσίου
Η Ανταρκτική είναι η ψυχρότερη ήπειρος της Γης. Η χαμηλότερη φυσική θερμοκρασία που έχει καταγραφεί ποτέ στην Γη ήταν −89,2°C στον ρωσικό Σταθμό Βοστόκ στην Ανταρκτική, στις 21 Ιουλίου 1983. Αντιθέτως, το πιο ζεστό σημείο στη Γη καταγράφηκε στις 13 Σεπτεμβρίου, 1922 στο El Azizia της Λιβύης, όπου το θερμόμετρο έφτασε τους 57 βαθμούς Κελσίου.
9. Το υψηλότερο σημείο στη Γη δεν είναι το όρος Έβερεστ
Είναι αλήθεια, ότι είναι ένα από τα πιο διάσημα βουνά του κόσμου και στα 8.848 μέτρα πάνω από την επιφάνεια της θάλασσας, θεωρείται η κορυφή του κόσμου. Ωστόσο, λαμβάνοντας υπόψη ότι σήμερα γνωρίζουμε πως η Γη δεν είναι απολύτως στρογγυλή, οποιοσδήποτε ή οτιδήποτε κατά μήκος του ισημερινού είναι ελαφρώς πιο κοντά στα αστέρια. Αυτό σημαίνει ότι παρότι το όρος Chimborazo στο Εκουαδόρ είναι μόλις 6.268 μέτρα πάνω από την επιφάνεια της θάλασσας, ακριβώς επειδή βρίσκεται πάνω σε ένα «φούσκωμα», είναι τεχνικά πιο μακριά από το κέντρο της Γης, δηλαδή πολύ ψηλότερο από το Everest!
Πηγή: physics4u.gr
Πώς «βλέπει» τα άστρα η αποστολή «Νέοι Ορίζοντες» από απόσταση 7 δισ. χιλιομέτρων μακριά από τη Γη;
Που βρίσκεται το διαστημικό σκάφος New Horizons σήμερα 15 Ιουνίου 2020;
Στις παρακάτω εικόνες βλέπουμε την τωρινή θέση του διαστημικού σκάφους New Horizons. Το πράσινο τμήμα της τροχιάς δείχνει την απόσταση που έχει διανύσει το New Horizons από την εκτόξευσή του μέχρι σήμερα, και το κόκκινο δείχνει τη μελλοντική πορεία του.
Πηγή: physicsgg.me
Cecilia Payne-Gaposchkin: απέδειξε ότι ο Ήλιος αποτελείται κυρίως από υδρογόνο, κι όμως δεν πήρε Βραβείο Νόμπελ
Η Σεσίλια Πέιν-Γκαπόσκιν (Cecilia Payne-Gaposchkin 1900 – 1979) ήταν Αγγλίδα (και στη συνέχεια Αμερικανίδα) αστρονόμος. Υπήρξε ο πρώτος άνθρωπος που απέδειξε ότι ο Ήλιος αποτελείται κυρίως από υδρογόνο, το 1925. Αδικαιολόγητα και κατάφωρα αδικημένη από την επιτροπή των Νόμπελ, παρόλη την συνεισφορά της στην αστρονομία, δεν έλαβε το βραβείο για τα αναμφισβήτητα επιστημονικά της επιτεύγματα στη φυσική.
Η Πέιν ολοκλήρωσε τις σπουδές της στο Πανεπιστήμιο του Κέμπριτζ, αλλά δεν της δόθηκε πτυχίο επειδή το Κέμπριτζ δεν έδινε τότε ακόμα τίτλους σπουδών σε γυναίκες. Μετά από μία συνάντησή της με τον διευθυντή Χάρλοου Σάπλεϋ του Αστεροσκοπείου του Χάρβαρντ, το οποίο είχε μόλις αρχίσει ένα μεταπτυχιακό πρόγραμμα στην αστρονομία, η Πέιν μετακόμισε στην Αμερική το 1923 κερδίζοντας μία υποτροφία με σκοπό την ενθάρρυνση των γυναικών να σπουδάσουν στο Αστεροσκοπείο. Η πρώτη φοιτήτρια ήταν η Αδελαΐς `Ειμς (Adelaide Ames), το 1922, και η δεύτερη ήταν η Πέιν.
Ο Χάρλοου Σάπλεϋ έπεισε την Σεσίλια Πέιν να εκπονήσει κατευθείαν διδακτορική διατριβή και έτσι το 1925 η Πέιν πήρε το διδακτορικό της στην αστρονομία για τη διατριβή της με θέμα: Αστρικές ατμόσφαιρες: Συμβολή στην παρατηρησιακή μελέτη υψηλών θερμοκρασιών στα στρώματα αναστροφής των αστέρων.
Ο αστρονόμος Όττο Στρούβε τη χαρακτήρισε ως «αναμφίβολα την πιο ιδιοφυή διδακτορική διατριβή που εκπονήθηκε ποτέ στην αστρονομία». Εφαρμόζοντας τη θεωρία ιονισμού που είχε αναπτυχθεί από τον Ινδό φυσικό Μεγκνάντ Σάχα, η Πέιν κατάφερε να συσχετίσει με ακρίβεια τους φασματικούς τύπους των αστέρων με τις πραγματικές επιφανειακές θερμοκρασίες τους.
Γνωρίζουμε σήμερα ότι, καθώς η ύλη θερμαίνεται, τα ηλεκτρόνια της μεταπηδούν σε υψηλότερα επίπεδα ενέργειας και με αρκετή ενέργεια μπορούν να γίνουν ιονισμένα. Γνωρίζουμε ότι τα αστέρια παρουσιάζουν διαφορετικά φασματικά χαρακτηριστικά και γραμμές απορρόφησης / εκπομπής και αυτό εξαρτάται από το χρώμα ενός αστεριού, το οποίο με τη σειρά του καθορίζεται από τη θερμοκρασία της επιφάνειας του αστεριού.
Αλλά τίποτα από αυτά δεν ήταν γνωστό το 1925. Τότε η Σεσίλια Πέιν-Γκαπόσκιν συνθέτοντας ιδέες και πληροφορίες από εντελώς διαφορετικά πεδία, έβαλε μαζί όλα αυτά τα φαινόμενα της θερμοκρασίας, του χρώματος και του ιονισμού. Με αυτόν τον τρόπο, ήταν σε θέση να καθορίσει, με βάση την ένταση των γραμμών σε αστέρια διαφορετικών τύπων, από τι αποτελούνται. Ενώ περιέχουν τα ίδια στοιχεία με τη Γη, είχαν χιλιάδες φορές περισσότερο ήλιο και εκατομμύρια φορές περισσότερο υδρογόνο.
Απέδειξε λοιπόν ότι οι μεγάλες διαφορές στις αστρικές γραμμές απορροφήσεως οφείλονταν σε διαφορετικούς βαθμούς ιονισμού που συνέβαιναν σε διαφορετικές θερμοκρασίες, και όχι στις διαφορετικές αφθονίες των χημικών στοιχείων της ύλης.
Πρότεινε ορθά ότι το πυρίτιο, ο άνθρακας και άλλα κοινά (βαρύτερα του λιθίου) στοιχεία που είχαν ανιχνευθεί στον `Ήλιο υπήρχαν εκεί με τις ίδιες σχετικές αφθονίες όπως πάνω στη Γη, αλλά ότι το ήλιο και ιδιαίτερα το υδρογόνο ήταν πολύ περισσότερο άφθονα (περίπου 1 εκατομμύριο φορές μεγαλύτερο ποσοστό στην περίπτωση του υδρογόνου).
Η διατριβή της Πέιν εδραίωσε έτσι την πεποίθηση ότι το υδρογόνο ήταν το κυριότερο συστατικό των αστέρων. Κατά την εξέταση της διατριβής ο Χένρι Νόρις Ράσελ απέτρεψε την Πέιν από το να συμπεράνει ότι η σύσταση του `Ήλιου διέφερε από αυτή της Γης, πράγμα που ερχόταν σε αντίθεση με την επικρατούσα τότε άποψη. Ωστόσο, ο ίδιος ο Ράσελ άλλαξε γνώμη 4 χρόνια αργότερα, όταν κι άλλα δεδομένα ανακαλύφθηκαν.
Παρά το διδακτορικό της και τα βραβεία της διατριβής της δεν κατάφερε ποτέ να πείσει την επιτροπή των Νόμπελ ότι το άξιζε.
Πηγή: physics4u.gr/blog
Γιατί ανησυχούν οι αστρονόμοι με την αύξηση των δορυφόρων στο διάστημα;
Οι αστρονόμοι προειδοποιούν ότι οι παρατηρήσεις του έναστρου ουρανού διαμέσου των επίγειων τηλεσκοπίων τους θα παρεμποδίζονται εξαιτίας του μεγάλου αριθμού δορυφόρων που μπαίνουν σε τροχιά γύρω από τη Γη.
Από την επόμενη εβδομάδα, θα ξεκινήσει μια εκστρατεία για την εκτόξευση χιλιάδων νέων δορυφόρων, προσφέροντας πρόσβαση υψηλής ταχύτητας ίντερνετ από το διάστημα. Αλλά οι πρώτοι στόλοι αυτών των διαστημόπλοιων, που έχουν ήδη αποσταλεί σε τροχιά από την αμερικανική εταιρεία SpaceX, επηρεάζουν τις εικόνες του νυχτερινού ουρανού. Εμφανίζονται ως λαμπερές λευκές ραβδώσεις, τόσο εκθαμβωτικές που ανταγωνίζονται τα αστέρια.
Οι επιστήμονες ανησυχούν ότι οι μελλοντικοί «μεγα-αστερισμοί» των δορυφόρων θα μπορούσαν να αποκρύψουν εικόνες από τα τηλεσκόπια και να παρεμποδίσουν τις παρατηρήσεις των αστρονόμων.
Οι εμπλεκόμενες εταιρείες δήλωσαν ότι συνεργάζονται με τους αστρονόμους για να ελαχιστοποιήσουν τις επιπτώσεις των δορυφόρων.
Γιατί εκτοξεύονται τόσοι πολλοί δορυφόροι;
Είναι όλα σχετικά με την υψηλής ταχύτητας πρόσβαση στο Διαδίκτυο. Αντί να περιορίζονται από καλώδια, οι δορυφόροι μπορούν να εκπέμπουν σήμα ίντερνετ από το διάστημα.
Αν υπάρχουν πολλοί δορυφόροι σε τροχιά, ακόμη και οι πιο απομακρυσμένες περιοχές μπορούν να έχουν συνδεσιμότητα στο διαδίκτυο. Αλλά από την επόμενη εβδομάδα, ο αστερισμός Starlink – ένα έργο της αμερικανικής εταιρείας SpaceX – θα ξεκινήσει την αποστολή παρτίδων που θα αποτελούνται από 60 δορυφόρους.
Η βρετανική εταιρεία OneWeb έχει στόχο να αποστείλει περίπου 650 με 2.000 δορυφόρους, αν υπάρχει αρκετή ζήτηση από τους πελάτες.
Γιατί ανησυχούν οι αστρονόμοι;
Τον Μάιο και το Νοέμβριο, η Starlink έστειλε 120 δορυφόρους σε τροχιές.
Αλλά οι ερευνητές ανησύχησαν όταν ένα διαστημικό σκάφος εμφανίστηκε στις εικόνες τους σαν έντονο λευκό φως.
Η Ντάρα Πατέλ, αστρονόμος στο Βασιλικό Παρατηρητήριο του Greenwich, δήλωσε: «Αυτοί οι δορυφόροι είναι πολύ αντανακλαστικοί και αντικατοπτρίζουν το φως του Ήλιου, πράγμα που σημαίνει ότι μπορούμε να τους δούμε σε εικόνες που απαθανατίζουμε με τα τηλεσκόπια.»
«Αυτοί οι δορυφόροι επίσης χρησιμοποιούν αρκετή ακτινοβολία, κάτι που σημαίνει ότι μπορούν να επηρεάσουν τα σήματα που χρησιμοποιούν οι αστρονόμοι.», προσέθεσε.
Τέλος, η Πατέλ προειδοποίησε ότι το πρόβλημα θα αυξηθεί όσο αυξάνεται ο αριθμός των δορυφόρων που βρίσκονται σε τροχιά.
Τι θα μπορούσε να σημαίνει αυτό για την έρευνα;
Ο Δρ. Κλέμεντς πιστεύει ότι οι δορυφόροι θα μπορούσαν να έχουν πραγματικό αντίκτυπο στις παρατηρήσεις.
«Παρουσιάζουν ένα προσκήνιο ανάμεσα σε αυτό που παρατηρούμε από τη Γη και το υπόλοιπο Σύμπαν, έτσι παρεμποδίζουν τα πάντα.»
Όπως εξήγησε ο Κλέμεντς: «Θέλουμε να κάνουμε μια ταινία σε πραγματικό χρόνο για τον τρόπο με τον οποίο αλλάζει ο ουρανός. Τώρα έχου τους δορυφόρους να διακόπτουν τις έρευνες, σαν κάποιος να περπατά γύρω από ένα φως.»
Πηγή: skai.gr
Τι βρίσκεται μέσα σε μια μαύρη τρύπα;
Έχετε καταφέρει να ταξιδέψετε δεκάδες χιλιάδες έτη φωτός πέρα από το ηλιακό σύστημα και ανυπομονείτε να κοιτάξετε στα βάθη των μεγάλων διαστρικών κενών. Έχετε παρακολουθήσει μερικά από τα πιο όμορφα και εξωφρενικά ισχυρά γεγονότα του σύμπαντος, από τις γεννήσεις νέων ηλιακών συστημάτων μέχρι τους κατακλυσμικούς θανάτους τεράστιων αστεριών. Και τώρα για το κύκνειο άσμα σας, πρόκειται να κάνετε κάτι μεγάλο: είστε έτοιμος να βουτήξετε στο πιο σκοτεινό μαύρο του Κόσμου, σε μια γιγαντιαία μαύρη τρύπα και να δείτε τι βρίσκεται στην άλλη πλευρά αυτού του αινιγματικού ορίζοντα γεγονότων. Τι θα βρείτε μέσα; Διαβάστε γενναίοι εξερευνητές.
Μια προσομοιωμένη εικόνα μιας μαύρης τρύπας
Σχεδόν κοντά στο τέρας
Πρώτον, πρέπει να ξεκαθαρίσουμε ορισμένα πράγματα. Υπάρχουν πολλά είδη μαύρων οπών: μερικές τεράστιες, μερικές μικρές, μερικές με ηλεκτρικά φορτία, μερικές χωρίς, και μερικές με γρήγορη περιστροφή και άλλων ιδιοτήτων. Για τους σκοπούς αυτής της περιπέτειας σε αυτή τη συγκεκριμένη ιστορία, θα παραμείνω στο απλούστερο δυνατό σενάριο: μια γιγαντιαία μαύρη τρύπα χωρίς ηλεκτρικό φορτίο και καμία περιστροφή. Φυσικά αυτό είναι σίγουρα μη ρεαλιστικό, αλλά εξακολουθεί να είναι μια διασκεδαστική ιστορία με άφθονη ψυχρή φυσική.
Από μακριά η μαύρη τρύπα είναι εκπληκτικά ήπια. Φαίνεται απλώς σαν ένα τεράστιο αντικείμενο, σχεδόν σαν οποιοδήποτε άλλο τεράστιο αντικείμενο. Η βαρύτητα είναι η βαρύτητα και η μάζα είναι μάζα – μια μαύρη τρύπα με τη μάζα της θα σας τραβήξει ακριβώς όπως ο ίδιος ο ήλιος. Το μόνο που λείπει είναι η υπέροχη θερμότητα και το φως και η ζεστασιά και η ακτινοβολία του. Αλλά αν νομίζετε ότι μπορείτε να περιφέρεστε γύρω της σε τροχιά σε μια ασφαλή απόσταση, σίγουρα θα μπορούσατε.
Αλλά γιατί ενοχλείστε να στρέφεστε γύρω της όταν μπορείτε να πάτε πιο μακριά;
Η ίδια η μαύρη τρύπα είναι μια ιδιαιτερότητα, ένα σημείο άπειρης πυκνότητας. Αλλά δεν μπορείτε να δείτε την ίδια την ιδιαιτερότητα. Περιβάλλεται από τον ορίζοντα γεγονότων , αυτό που γενικά και με σύνεση θεωρούμε την “επιφάνεια” της μαύρης τρύπας. Για να πάτε πιο πέρα, πρέπει πρώτα να τρυπήσετε αυτό το πέπλο.
Πέρα από τον ορίζοντα
Ο ορίζοντας συμβάντων ή γεγονότων δεν είναι ένα πραγματικό, φυσικό όριο. Δεν είναι μεμβράνη ή επιφάνεια. Απλά ορίζεται ως μια συγκεκριμένη απόσταση από την ιδιαιτερότητα, την απόσταση όπου αν πέσετε κάτω από αυτό το όριο, δεν μπορείτε να βγείτε. Καμιά διέξοδος.
Είναι η απόσταση από την ιδιαιτερότητα, όπου η βαρυτική έλξη είναι τόσο ακραία ώστε τίποτα, ούτε και το ίδιο το φως, μπορεί να ξεφύγει από τη μήνι της μαύρης τρύπας. Εάν επρόκειτο να πέσετε κάτω από αυτό το όριο και αποφασίσατε ότι μπορούσατε να εξερευνήσετε τη μαύρη τρύπα, τότε κάνατε πάρα πολύ άσχημα. Όσες ρουκέτες και πυραύλους βάλετε για να ξεφύγετε δεν θα βρεθείτε μακρύτερα από την ιδιαιτερότητα. Είστε παγιδευμένοι. Καταδικασμένοι.
Αλλά όχι αμέσως. Έχετε λίγες στιγμές για να απολαύσετε την εμπειρία πριν συναντήσετε την αναπόφευκτη τελική κατάστασή σας, αν η “απόλαυση” είναι η σωστή λέξη. Ο χρόνος που χρειάζεται για να φτάσεις στην ιδιαιτερότητα εξαρτάται από τη μάζα της μαύρης τρύπας. Για μια μικρή μαύρη τρύπα (μερικές φορές η μάζα του ήλιου μετράει ως “μικρή”), δεν μπορείτε καν να ανοιγοκλείσετε το μάτι σας. Για μια γιγαντιαία, τουλάχιστον ένα εκατομμύριο φορές μεγαλύτερη από τον ήλιο μας, έχετε χρόνο όσο διαρκούν λίγοι καρδιακοί παλμοί για να ζήσετε αυτή τη μυστηριώδη γωνιά του σύμπαντος.
Αλλά θα φτάσετε στην ιδιαιτερότητα. Δεν έχετε επιλογή. Μέσα στον ορίζοντα συμβάντων, τίποτα δεν μπορεί να παραμείνει ακίνητο. Είστε αναγκασμένοι να κινηθείτε για πάντα. Και η ιδιαιτερότητα βρίσκεται μπροστά σας σε όλα τα δυνατά σας μέλλοντα.
Έξω από τον ορίζοντα συμβάντος της μαύρης τρύπας, μπορείτε να κινηθείτε προς οποιαδήποτε κατεύθυνση στο χώρο που σας αρέσει. Πάνω. Αριστερά. Η επιλογή είναι δική σου. Αλλά δεν έχει σημασία τι κάνετε (ή όχι) στο χώρο, πρέπει πάντα να ταξιδέψετε στο μέλλον σας. Απλά δεν μπορείτε να του ξεφύγετε.
Μέσα στον ορίζοντα συμβάντος μιας μαύρης τρύπας, αυτή η κοινή κατανόηση καταρρέει. Εδώ, ένα μόνο σημείο – η ιδιαιτερότητα – βρίσκεται στο μέλλον σας. Απλά πρέπει να ταξιδέψετε προς την ιδιαιτερότητα. Στρίψτε αριστερά, γυρίστε, γυρίστε, δεν έχει σημασία – η ιδιαιτερότητα παραμένει πάντα μπροστά σας. Και θα χτυπήσετε εκείνη την ιδιαιτερότητα σε ένα πεπερασμένο χρονικό διάστημα.
Ένα ραντεβού με άπειρο
Καθώς πέφτατε προς την ιδιαιτερότητα , δεν είστε καλυμμένοι με μαύρο χρώμα. Το φως από το περιβάλλον σύμπαν πέφτει με σας και συνεχίζει να πέφτει μετά από σας. Λόγω της ακραίας βαρύτητας, αυτό το φως μετατοπίζεται σε υψηλότερες συχνότητες και εξαιτίας της διαστολής του χρόνου, το εξωτερικό σύμπαν φαίνεται να επιταχύνεται, αλλά είναι ακόμα εκεί.
Αυτό δεν σημαίνει ότι δεν είναι παράξενο.
Επειδή όλη η μάζα της μαύρης τρύπας συγκεντρώνεται σε ένα απείρως μικρό σημείο, οι διαφορές στη βαρύτητα πάνω στο σώμα σας είναι ακραίες. Είστε τεντωμένοι από το κεφάλι μέχρι τα πόδια με μια διαδικασία που εύστοχα ονομάζεται ως σπαγγετοποίηση (spaghettification). Και επιπλέον, είστε συμπιεσμένοι στο μέσον σας. Αυτή η συμπίεση λειτουργεί στις δέσμες φωτός που σας περιβάλλουν, συγκεντρώνοντας το φως που πέφτει σε μια φωτεινή μπάντα γύρω από τη μέση σας.
Η εικόνα σας για την ιδιαιτερότητα γίνεται γκροτέσκο και παραμορφώνεται επίσης. Είναι μαύρη – δεν την βλέπετε, γιατί βρίσκεται στο μέλλον σας και όπως και το μέλλον σας δεν ξέρετε με τι μοιάζει μέχρι να φτάσετε εκεί. Αλλά αντί να εμφανίζεται ως ένα μικροσκοπικό σημείο, οι τεράστιες διαφορές βαρυτικές διαφορές τεντώνουν αυτό το σημείο για να κατακλύσουν το μεγαλύτερο μέρος της εικόνα σας.
Καθώς πλησιάζετε την ιδιαιτερότητα, φαίνεται σαν να προσγειώνεστε στην επιφάνεια ενός τεράστιου, άχαρου, άδειου, μαύρου πλανήτη.
Όταν η ιδιαιτερότητα τεντώνεται εντελώς από ορίζοντα σε ορίζοντα, τότε την έχετε δει.
Και τι βρίσκεις εκεί; Δεν ξέρουμε. Θα ήταν ωραίο αν μπορούσατε να μας πείτε, αλλά, όπως είπαμε, τίποτα δεν διαφεύγει από μια μαύρη τρύπα, συμπεριλαμβανομένου και εσάς.
Πηγή: physics4u.gr
Οι ήχοι πλανητών και λοιπών ουρανίων σωμάτων, όπως τους κατέγραψε η NASA!
Η Φυσική των διαστημικών ήχων
Πώς «ακούγονται» οι πλανήτες και τα λοιπά ουράνια σώματα;
Στην πραγματικότητα, οι πλανήτες δεν παράγουν ήχους που μπορεί κανείς να ακούσει όντας κοντά τους.
Εξάλλου, στο διάστημα δεν υπάρχει ατμόσφαιρα, πόσο, μάλλον, ατμόσφαιρα με επαρκή πυκνότητα για τη διάδοση του ήχου. Ο ήχος δεν μπορεί να διαδοθεί με τον τρόπο που διαδίδεται εντός της γήινης ατμόσφαιρας, δηλαδή με τη μορφή [ηχητικών] διαμηκών κυμάτων.
Εντούτοις, όλα τα ουράνια σώματα και, μεταξύ αυτών, και οι πλανήτες, εκπέμπουν ακτινοβολίες σε όλο το φάσμα δυνατών εκπομπών. Εξ αυτού, ένα μικρό μόνο τμήμα είναι ορατό στον άνθρωπο.
Με κατάλληλη επεξεργασία από τους επιστήμονες της όμως, η NASA αποκωδικοποίησε ένα άλλο, μικρό, τμήμα αυτών των εκπομπών, καθιστώντας τες ακροάσιμες από τον άνθρωπο.
Πώς ακούγονται πλανήτες και άλλα ουράνια σώματα;
Στα βίντεο που ακολουθούν θα ακούσετε απόκοσμες δονήσεις από το Φεγγάρι, τον Ήλιο, τον Κρόνο, τον Ποσειδώνα, το Δία, τον Ουρανό αλλά και τη Γη!
Η πρώτη φωτογραφία μαύρης τρύπας [και γιατί είναι σημαντική]
Για πρώτη φορά στην ιστορία της αστρονομίας έχουμε τη δυνατότητα να δούμε την πρώτη φωτογραφία μιας μαύρης τρύπας ή μάλλον το τι υπάρχει γύρω από μια μαύρη τρύπα, αφού οι μαύρες τρύπες είναι στην πραγματικότητα αόρατες, καθώς απορροφούν οτιδήποτε εντός τους, ακόμη και το φως.
Πρόκειται για την υπερμεγέθη μαύρη τρύπα που βρίσκεται στον γαλαξία που ονομάζεται Messier 87 ή Α της Παρθένου, έχει μάζα 6,5 δισεκατομμύρια φορές μεγαλύτερη από την μάζα του Ήλιου(!) και διάμετρο 40 δισεκατομμύρια χιλιόμετρα (τρία εκατομμύρια φορές μεγαλύτερη από τη Γη). O γαλαξίας Μ87 απέχει 52 εκατομμύρια έτη φωτός από τη Γη.
Τις εικόνες παρουσίασε η συνεργασία Event Horizon Telescope που αποτελείται από ένα δίκτυο τηλεσκοπίων σε διάφορα μέρη του κόσμου. Η διασύνδεση των τηλεσκοπίων ισοδυναμεί με ένα τεράστιο εικονικό τηλεσκόπιο με μέγεθος σχεδόν όσο η Γη. Με αυτό τον τρόπο, δημιουργείται αρκετή δυνατότητα μεγέθυνσης, ώστε να απεικονισθεί η περιοχή γύρω από μια μαύρη τρύπα, ιδίως του λεγόμενου «ορίζοντα γεγονότων», δηλαδή της «περιμέτρου» πέρα από την οποία τίποτε δεν μπορεί να δραπετεύσει, ούτε το φως (γι’ αυτό, άλλωστε, μια μαύρη τρύπα λέγεται…μαύρη).
Αυτό που ανιχνεύει το υπερ-τηλεσκόπιο Event Horizon είναι η ακτινοβολία που εκπέμπει η μαύρη τρύπα, καθώς οι διεργασίες που εξελίσσονται εντός της προϋποθέτουν θερμοκρασίες που μετρώνται σε δισεκατομμύρια βαθμούς Κελσίου. Τα επιμέρους τηλεσκόπια συγκεντρώνουν δεδομένα από την παρατήρηση, τα οποία κατόπιν τροφοδοτούνται σε πανίσχυρους ηλεκτρονικούς υπολογιστές. Η Τεχνητή Νοημοσύνη αναλαμβάνει να επεξεργαστεί τάχιστα ωκεανούς πληροφοριών και να συνθέσει εικόνες. Αυτές είναι και οι «φωτογραφίες» από την μαύρη τρύπα Μ87* που αποκαλύπτονται σήμερα.
Βίντεο: Στην σκιά μιας μαύρης τρύπας
Πηγή: iopscience.iop.org/journal